These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1180936)

  • 21. The mechanism of the oxidation of ascorbate and MN2+ by chloroplasts. The role of the radical superoxide.
    Epel BL; Neumann J
    Biochim Biophys Acta; 1973 Dec; 325(3):520-9. PubMed ID: 4149767
    [No Abstract]   [Full Text] [Related]  

  • 22. [Superoxide radical and superoxide dismutase in the free-radical theory of aging (a review)].
    Gusev VA; Panchenko LF
    Vopr Med Khim; 1982; 28(4):8-25. PubMed ID: 6287731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemistry and biochemistry of superoxide dismutases.
    Hassan HM; Fridovich I
    Eur J Rheumatol Inflamm; 1981; 4(2):160-72. PubMed ID: 7343318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis.
    Fielden EM; Roberts PB; Bray RC; Lowe DJ; Mautner GN; Rotilio G; Calabrese L
    Biochem J; 1974 Apr; 139(1):49-60. PubMed ID: 4377100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the superoxide free radical ion in photosynthetic ascorbate oxidation and ascorbate-mediated photophosphorylation.
    Elstner EF; Kramer R
    Biochim Biophys Acta; 1973 Sep; 314(3):340-53. PubMed ID: 4751235
    [No Abstract]   [Full Text] [Related]  

  • 26. Superoxide dismutase and oxygen toxicity.
    Koppenol WH
    Bull Eur Physiopathol Respir; 1981; 17 Suppl():85-90. PubMed ID: 7248579
    [No Abstract]   [Full Text] [Related]  

  • 27. Electrostatic recognition in redox copper proteins: a 1H NMR study of the protonation behavior of His 19 in oxidized and reduced Cu,Zn superoxide dismutase.
    Desideri A; Polticelli F; Falconi M; Sette M; Ciriolo MR; Paci M; Rotilio G
    Arch Biochem Biophys; 1993 Mar; 301(2):244-50. PubMed ID: 8384828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for the photochemical production of superoxide mediated by saponified chlorophyll.
    Jahnke LS; Frenkel AW
    Biochem Biophys Res Commun; 1975 Sep; 66(1):144-50. PubMed ID: 1164420
    [No Abstract]   [Full Text] [Related]  

  • 29. [Possible mechanism and physiopathological significance of superoxide dismutase regulation by oxygen free radicals].
    Miliakova MN; Shabanov VV
    Biomed Khim; 2006; 52(2):130-7. PubMed ID: 16805383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative metabolism of hydralazine. Evidence for nitrogen centered radicals formation.
    Sinha BK; Motten AG
    Biochem Biophys Res Commun; 1982 Apr; 105(3):1044-51. PubMed ID: 6284161
    [No Abstract]   [Full Text] [Related]  

  • 31. Influence of catalase and superoxide dismutase on side oxidations involving singlet oxygen.
    Finazzi Agró F; De Sole P; Rotilio G; Mondoví B
    Ital J Biochem; 1973; 22(5):217-31. PubMed ID: 4363678
    [No Abstract]   [Full Text] [Related]  

  • 32. Superoxide dismutase-inhibitible reduction of cytochrome c by the alloxan radical. Implications for alloxan cytotoxicity.
    Winterbourn CC
    Biochem J; 1982 Dec; 207(3):609-12. PubMed ID: 6299273
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Superoxide dismutase activity of low molecular Cu2+ complexes].
    Weser U; Joester KE; Paschen W; Jung G
    Hoppe Seylers Z Physiol Chem; 1972 Oct; 353(10):1576-7. PubMed ID: 4649846
    [No Abstract]   [Full Text] [Related]  

  • 34. Superoxide dismutase and compounds with SOD-like activity.
    Ciurea D
    Rom J Neurol Psychiatry; 1992; 30(2):89-98. PubMed ID: 1325830
    [No Abstract]   [Full Text] [Related]  

  • 35. Proliferation of mouse fibroblasts induced by 1,2-dimethylhydrazine auto-oxidation: role of iron and free radicals.
    Gamberini M; Leite LC
    Biochem Biophys Res Commun; 1997 May; 234(1):44-7. PubMed ID: 9168957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prevention of doxorubicin-induced killing of MCF-7 human breast cancer cells by oxygen radical scavengers and iron chelating agents.
    Doroshow JH
    Biochem Biophys Res Commun; 1986 Feb; 135(1):330-5. PubMed ID: 3954778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanism of hydrogen peroxide-induced Cu,Zn-superoxide dismutase-centered radical formation as explored by immuno-spin trapping: the role of copper- and carbonate radical anion-mediated oxidations.
    Ramirez DC; Gomez Mejiba SE; Mason RP
    Free Radic Biol Med; 2005 Jan; 38(2):201-14. PubMed ID: 15607903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions.
    Barik A; Mishra B; Shen L; Mohan H; Kadam RM; Dutta S; Zhang HY; Priyadarsini KI
    Free Radic Biol Med; 2005 Sep; 39(6):811-22. PubMed ID: 16109310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of iron and influence of antiinflammatory drugs on oxygen-derived free radical production and reactivity.
    Cleland LG; Betts WH; Vernon-Roberts B; Bielicki J
    J Rheumatol; 1982; 9(6):885-92. PubMed ID: 7161780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Haemoglobin oxidation and free radical production in the red cell.
    Winterbourn CC
    Biomed Biochim Acta; 1983; 42(11-12):S134-8. PubMed ID: 6326764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.