These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11809369)

  • 1. Electric signals of light excited bacteriorhodopsin mutant D96N.
    Tóth-Boconádi R; Taneva SG; Keszthelyi L
    J Photochem Photobiol B; 2001 Dec; 65(2-3):122-6. PubMed ID: 11809369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins.
    Tóth-Boconádi R; Dér A; Keszthelyi L
    Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoelectric response of the N intermediate of bacteriorhodopsin and its mutant T46V.
    Tóth-Boconádi R; Szabó-Nagy A; Taneva SG; Keszthelyi L
    FEBS Lett; 1999 Oct; 459(1):5-8. PubMed ID: 10508907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput screening of bacteriorhodopsin mutants in whole cell pastes.
    Martinez LC; Turner GJ
    Biochim Biophys Acta; 2002 Aug; 1564(1):91-8. PubMed ID: 12101000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular motion of bacteriorhodopsin mutant D96N in the purple membrane.
    Kikukawa T; Araiso T; Mukasa K; Shimozawa T; Kamo N
    FEBS Lett; 1995 Dec; 377(3):502-4. PubMed ID: 8549785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Late events in the photocycle of bacteriorhodopsin mutant L93A.
    Tóth-Boconádi R; Keszthelyi L; Stoeckenius W
    Biophys J; 2003 Jun; 84(6):3848-56. PubMed ID: 12770890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant.
    Lu M; Balashov SP; Ebrey TG; Chen N; Chen Y; Menick DR; Crouch RK
    Biochemistry; 2000 Mar; 39(9):2325-31. PubMed ID: 10694399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buffer effects on electric signals of light-excited bacteriorhodopsin mutants.
    Tóth-Boconádi R; Dér A; Taneva SG; Tuparev NP; Keszthelyi L
    Eur Biophys J; 2001; 30(2):140-6. PubMed ID: 11409465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative phenomena in the photocycle of D96N mutant bacteriorhodopsin.
    Radionov AN; Kaulen AD
    FEBS Lett; 1995 Dec; 377(3):330-2. PubMed ID: 8549749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein conformational changes in the bacteriorhodopsin photocycle.
    Subramaniam S; Lindahl M; Bullough P; Faruqi AR; Tittor J; Oesterhelt D; Brown L; Lanyi J; Henderson R
    J Mol Biol; 1999 Mar; 287(1):145-61. PubMed ID: 10074413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin.
    Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W
    Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switch from conventional to distributed kinetics in the bacteriorhodopsin photocycle.
    Dioumaev AK; Lanyi JK
    Biochemistry; 2008 Oct; 47(42):11125-33. PubMed ID: 18821776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of the M(N) (M(open)) intermediate in the wild-type bacteriorhodopsin photocycle is accompanied by an absorption spectrum shift to shorter wavelength, like that in the mutant D96N bacteriorhodopsin photocycle.
    Radionov AN; Klyachko VA; Kaulen AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1210-4. PubMed ID: 10561570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriorhodopsin expressed in Schizosaccharomyces pombe pumps protons through the plasma membrane.
    Hildebrandt V; Fendler K; Heberle J; Hoffmann A; Bamberg E; Büldt G
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3578-82. PubMed ID: 8386375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-dependent bending in and out of purple membranes comprising BR-D85T.
    Baumann RP; Eussner J; Hampp N
    Phys Chem Chem Phys; 2011 Dec; 13(48):21375-82. PubMed ID: 22033510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage dependence of proton pumping by bacteriorhodopsin mutants with altered lifetime of the M intermediate.
    Geibel S; Lörinczi É; Bamberg E; Friedrich T
    PLoS One; 2013; 8(9):e73338. PubMed ID: 24019918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The back photoreaction of the M intermediate in the photocycle of bacteriorhodopsin: mechanism and evidence for two M species.
    Druckmann S; Friedman N; Lanyi JK; Needleman R; Ottolenghi M; Sheves M
    Photochem Photobiol; 1992; 56(6):1041-7. PubMed ID: 11538403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriorhodopsin (bR) as an electronic conduction medium: current transport through bR-containing monolayers.
    Jin Y; Friedman N; Sheves M; He T; Cahen D
    Proc Natl Acad Sci U S A; 2006 Jun; 103(23):8601-6. PubMed ID: 16731629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for charge-controlled conformational changes in the photocycle of bacteriorhodopsin.
    Sass HJ; Gessenich R; Koch MH; Oesterhelt D; Dencher NA; Büldt G; Rapp G
    Biophys J; 1998 Jul; 75(1):399-405. PubMed ID: 9649397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.