BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11809774)

  • 1. Oxidative stress is markedly elevated in lecithin:cholesterol acyltransferase-deficient mice and is paradoxically reversed in the apolipoprotein E knockout background in association with a reduction in atherosclerosis.
    Ng DS; Maguire GF; Wylie J; Ravandi A; Xuan W; Ahmed Z; Eskandarian M; Kuksis A; Connelly PW
    J Biol Chem; 2002 Apr; 277(14):11715-20. PubMed ID: 11809774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis.
    Mertens A; Verhamme P; Bielicki JK; Phillips MC; Quarck R; Verreth W; Stengel D; Ninio E; Navab M; Mackness B; Mackness M; Holvoet P
    Circulation; 2003 Apr; 107(12):1640-6. PubMed ID: 12668499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lecithin:cholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice.
    Furbee JW; Sawyer JK; Parks JS
    J Biol Chem; 2002 Feb; 277(5):3511-9. PubMed ID: 11719520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous Atherosclerosis in Aged LCAT-Deficient Hamsters With Enhanced Oxidative Stress-Brief Report.
    Guo M; Liu Z; Xu Y; Ma P; Huang W; Gao M; Wang Y; Liu G; Xian X
    Arterioscler Thromb Vasc Biol; 2020 Dec; 40(12):2829-2836. PubMed ID: 32998519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinated alteration of hepatic gene expression in fatty acid and triglyceride synthesis in LCAT-null mice is associated with altered PUFA metabolism.
    Song H; Zhu L; Picardo CM; Maguire G; Leung V; Connelly PW; Ng DS
    Am J Physiol Endocrinol Metab; 2006 Jan; 290(1):E17-E25. PubMed ID: 16105858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lecithin:cholesterol acyltransferase deficiency protects against cholesterol-induced hepatic endoplasmic reticulum stress in mice.
    Hager L; Li L; Pun H; Liu L; Hossain MA; Maguire GF; Naples M; Baker C; Magomedova L; Tam J; Adeli K; Cummins CL; Connelly PW; Ng DS
    J Biol Chem; 2012 Jun; 287(24):20755-68. PubMed ID: 22500017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered activities of anti-atherogenic enzymes LCAT, paraoxonase, and platelet-activating factor acetylhydrolase in atherosclerosis-susceptible mice.
    Forte TM; Subbanagounder G; Berliner JA; Blanche PJ; Clermont AO; Jia Z; Oda MN; Krauss RM; Bielicki JK
    J Lipid Res; 2002 Mar; 43(3):477-85. PubMed ID: 11893784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta2-adrenergic activity modulates vascular tone regulation in lecithin:cholesterol acyltransferase knockout mice.
    Manzini S; Pinna C; Busnelli M; Cinquanta P; Rigamonti E; Ganzetti GS; Dellera F; Sala A; Calabresi L; Franceschini G; Parolini C; Chiesa G
    Vascul Pharmacol; 2015 Nov; 74():114-121. PubMed ID: 26254103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma cholesteryl esters provided by lecithin:cholesterol acyltransferase and acyl-coenzyme a:cholesterol acyltransferase 2 have opposite atherosclerotic potential.
    Lee RG; Kelley KL; Sawyer JK; Farese RV; Parks JS; Rudel LL
    Circ Res; 2004 Nov; 95(10):998-1004. PubMed ID: 15486318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular cholesterol accumulation modulates high fat high sucrose (HFHS) diet-induced ER stress and hepatic inflammasome activation in the development of non-alcoholic steatohepatitis.
    Bashiri A; Nesan D; Tavallaee G; Sue-Chue-Lam I; Chien K; Maguire GF; Naples M; Zhang J; Magomedova L; Adeli K; Cummins CL; Ng DS
    Biochim Biophys Acta; 2016 Jul; 1861(7):594-605. PubMed ID: 27090939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatic lipase expression in macrophages contributes to atherosclerosis in apoE-deficient and LCAT-transgenic mice.
    Nong Z; Gonzalez-Navarro H; Amar M; Freeman L; Knapper C; Neufeld EB; Paigen BJ; Hoyt RF; Fruchart-Najib J; Santamarina-Fojo S
    J Clin Invest; 2003 Aug; 112(3):367-78. PubMed ID: 12897204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted disruption of the murine lecithin:cholesterol acyltransferase gene is associated with reductions in plasma paraoxonase and platelet-activating factor acetylhydrolase activities but not in apolipoprotein J concentration.
    Forte TM; Oda MN; Knoff L; Frei B; Suh J; Harmony JA; Stuart WD; Rubin EM; Ng DS
    J Lipid Res; 1999 Jul; 40(7):1276-83. PubMed ID: 10393212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete and Partial Lecithin:Cholesterol Acyltransferase Deficiency Is Differentially Associated With Atherosclerosis.
    Oldoni F; Baldassarre D; Castelnuovo S; Ossoli A; Amato M; van Capelleveen J; Hovingh GK; De Groot E; Bochem A; Simonelli S; Barbieri S; Veglia F; Franceschini G; Kuivenhoven JA; Holleboom AG; Calabresi L
    Circulation; 2018 Sep; 138(10):1000-1007. PubMed ID: 29748187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lecithin cholesterol acyltransferase null mice are protected from diet-induced obesity and insulin resistance in a gender-specific manner through multiple pathways.
    Li L; Hossain MA; Sadat S; Hager L; Liu L; Tam L; Schroer S; Huogen L; Fantus IG; Connelly PW; Woo M; Ng DS
    J Biol Chem; 2011 May; 286(20):17809-20. PubMed ID: 21454561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased plasma cholesterol esterification by LCAT reduces diet-induced atherosclerosis in SR-BI knockout mice.
    Thacker SG; Rousset X; Esmail S; Zarzour A; Jin X; Collins HL; Sampson M; Stonik J; Demosky S; Malide DA; Freeman L; Vaisman BL; Kruth HS; Adelman SJ; Remaley AT
    J Lipid Res; 2015 Jul; 56(7):1282-95. PubMed ID: 25964513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.
    Lambert G; Sakai N; Vaisman BL; Neufeld EB; Marteyn B; Chan CC; Paigen B; Lupia E; Thomas A; Striker LJ; Blanchette-Mackie J; Csako G; Brady JN; Costello R; Striker GE; Remaley AT; Brewer HB; Santamarina-Fojo S
    J Biol Chem; 2001 May; 276(18):15090-8. PubMed ID: 11278414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apolipoprotein E is the major physiological activator of lecithin-cholesterol acyltransferase (LCAT) on apolipoprotein B lipoproteins.
    Zhao Y; Thorngate FE; Weisgraber KH; Williams DL; Parks JS
    Biochemistry; 2005 Jan; 44(3):1013-25. PubMed ID: 15654758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Possible induction of renal dysfunction in patients with lecithin:cholesterol acyltransferase deficiency by oxidized phosphatidylcholine in glomeruli.
    Jimi S; Uesugi N; Saku K; Itabe H; Zhang B; Arakawa K; Takebayashi S
    Arterioscler Thromb Vasc Biol; 1999 Mar; 19(3):794-801. PubMed ID: 10073988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo contribution of LCAT to apolipoprotein B lipoprotein cholesteryl esters in LDL receptor and apolipoprotein E knockout mice.
    Furbee JW; Francone O; Parks JS
    J Lipid Res; 2002 Mar; 43(3):428-37. PubMed ID: 11893779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of probucol in lecithin-cholesterol acyltransferase-deficient mice: inhibition of 2 independent cellular cholesterol-releasing pathways in vivo.
    Tomimoto S; Tsujita M; Okazaki M; Usui S; Tada T; Fukutomi T; Ito S; Itoh M; Yokoyama S
    Arterioscler Thromb Vasc Biol; 2001 Mar; 21(3):394-400. PubMed ID: 11231919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.