BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 11809800)

  • 41. HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA.
    Garber ME; Wei P; Jones KA
    Cold Spring Harb Symp Quant Biol; 1998; 63():371-80. PubMed ID: 10384302
    [No Abstract]   [Full Text] [Related]  

  • 42. Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor.
    Herrmann CH; Rice AP
    J Virol; 1995 Mar; 69(3):1612-20. PubMed ID: 7853496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA.
    Wei P; Garber ME; Fang SM; Fischer WH; Jones KA
    Cell; 1998 Feb; 92(4):451-62. PubMed ID: 9491887
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional inactivation of Cdk9 through oligomerization chain reaction.
    Napolitano G; Mazzocco A; Fraldi A; Majello B; Lania L
    Oncogene; 2003 Jul; 22(31):4882-8. PubMed ID: 12894230
    [TBL] [Abstract][Full Text] [Related]  

  • 45. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP.
    Sobhian B; Laguette N; Yatim A; Nakamura M; Levy Y; Kiernan R; Benkirane M
    Mol Cell; 2010 May; 38(3):439-51. PubMed ID: 20471949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control.
    Pei Y; Schwer B; Shuman S
    J Biol Chem; 2003 Feb; 278(9):7180-8. PubMed ID: 12475973
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developmental regulators containing the I-mfa domain interact with T cyclins and Tat and modulate transcription.
    Wang Q; Young TM; Mathews MB; Pe'ery T
    J Mol Biol; 2007 Mar; 367(3):630-46. PubMed ID: 17289077
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II.
    Barboric M; Nissen RM; Kanazawa S; Jabrane-Ferrat N; Peterlin BM
    Mol Cell; 2001 Aug; 8(2):327-37. PubMed ID: 11545735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro.
    Wada T; Takagi T; Yamaguchi Y; Watanabe D; Handa H
    EMBO J; 1998 Dec; 17(24):7395-403. PubMed ID: 9857195
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stimulation of Tat-associated kinase-independent transcriptional elongation from the human immunodeficiency virus type-1 long terminal repeat by a cellular enhancer.
    West MJ; Karn J
    EMBO J; 1999 Mar; 18(5):1378-86. PubMed ID: 10064603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element.
    Fujinaga K; Irwin D; Huang Y; Taube R; Kurosu T; Peterlin BM
    Mol Cell Biol; 2004 Jan; 24(2):787-95. PubMed ID: 14701750
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription.
    Barboric M; Yik JH; Czudnochowski N; Yang Z; Chen R; Contreras X; Geyer M; Matija Peterlin B; Zhou Q
    Nucleic Acids Res; 2007; 35(6):2003-12. PubMed ID: 17341462
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distinct regions of cyclinT1 are required for binding to CDK9 and for recruitment to the HIV-1 Tat/TAR complex.
    Fraldi A; Licciardo P; Majello B; Giordano A; Lania L
    J Cell Biochem Suppl; 2001; Suppl 36():247-53. PubMed ID: 11455589
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.
    Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q
    Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome.
    Sawaya BE; Khalili K; Gordon J; Taube R; Amini S
    J Biol Chem; 2000 Nov; 275(45):35209-14. PubMed ID: 10931842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29.
    Zhou M; Huang K; Jung KJ; Cho WK; Klase Z; Kashanchi F; Pise-Masison CA; Brady JN
    J Virol; 2009 Jan; 83(2):1036-44. PubMed ID: 18971272
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The human immunodeficiency virus long terminal repeat includes a specialised initiator element which is required for Tat-responsive transcription.
    Rittner K; Churcher MJ; Gait MJ; Karn J
    J Mol Biol; 1995 May; 248(3):562-80. PubMed ID: 7752225
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase.
    Kim JB; Sharp PA
    J Biol Chem; 2001 Apr; 276(15):12317-23. PubMed ID: 11145967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The CDK9-associated cyclins T1 and T2 exert opposite effects on HIV-1 Tat activity.
    Napolitano G; Licciardo P; Gallo P; Majello B; Giordano A; Lania L
    AIDS; 1999 Aug; 13(12):1453-9. PubMed ID: 10465067
    [TBL] [Abstract][Full Text] [Related]  

  • 60. HIV-1 Tat and host AFF4 recruit two transcription elongation factors into a bifunctional complex for coordinated activation of HIV-1 transcription.
    He N; Liu M; Hsu J; Xue Y; Chou S; Burlingame A; Krogan NJ; Alber T; Zhou Q
    Mol Cell; 2010 May; 38(3):428-38. PubMed ID: 20471948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.