BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 11809846)

  • 1. Pairwise assembly determines the intrinsic potential for self-organization and mechanical properties of keratin filaments.
    Yamada S; Wirtz D; Coulombe PA
    Mol Biol Cell; 2002 Jan; 13(1):382-91. PubMed ID: 11809846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nonhelical tail domain of keratin 14 promotes filament bundling and enhances the mechanical properties of keratin intermediate filaments in vitro.
    Bousquet O; Ma L; Yamada S; Gu C; Idei T; Takahashi K; Wirtz D; Coulombe PA
    J Cell Biol; 2001 Nov; 155(5):747-54. PubMed ID: 11724817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanical properties of simple epithelial keratins 8 and 18: discriminating between interfacial and bulk elasticities.
    Yamada S; Wirtz D; Coulombe PA
    J Struct Biol; 2003 Jul; 143(1):45-55. PubMed ID: 12892725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional differences between keratins of stratified and simple epithelia.
    Hutton E; Paladini RD; Yu QC; Yen M; Coulombe PA; Fuchs E
    J Cell Biol; 1998 Oct; 143(2):487-99. PubMed ID: 9786957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of trichoplein, a novel keratin filament-binding protein.
    Nishizawa M; Izawa I; Inoko A; Hayashi Y; Nagata K; Yokoyama T; Usukura J; Inagaki M
    J Cell Sci; 2005 Mar; 118(Pt 5):1081-90. PubMed ID: 15731013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organization of keratin intermediate filaments into cross-linked networks.
    Lee CH; Coulombe PA
    J Cell Biol; 2009 Aug; 186(3):409-21. PubMed ID: 19651890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates.
    Magin TM; Schröder R; Leitgeb S; Wanninger F; Zatloukal K; Grund C; Melton DW
    J Cell Biol; 1998 Mar; 140(6):1441-51. PubMed ID: 9508776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of the bullous pemphigoid antigen 1 (BP230) and desmoplakin with intermediate filaments is mediated by distinct sequences within their COOH terminus.
    Fontao L; Favre B; Riou S; Geerts D; Jaunin F; Saurat JH; Green KJ; Sonnenberg A; Borradori L
    Mol Biol Cell; 2003 May; 14(5):1978-92. PubMed ID: 12802069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of early assembly intermediates of recombinant human keratins.
    Herrmann H; Wedig T; Porter RM; Lane EB; Aebi U
    J Struct Biol; 2002; 137(1-2):82-96. PubMed ID: 12064936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of the structure of keratin intermediate filaments: molecular mechanism by which different keratin molecules integrate into preexisting keratin intermediate filaments during differentiation.
    Steinert PM; Marekov LN; Parry DA
    Biochemistry; 1993 Sep; 32(38):10046-56. PubMed ID: 7691168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the self-organization property of keratin intermediate filaments.
    Kim JS; Lee CH; Coulombe PA
    Biophys J; 2010 Nov; 99(9):2748-56. PubMed ID: 21044571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse differentiation-specific keratins 1 and 10 require a preexisting keratin scaffold to form a filament network.
    Kartasova T; Roop DR; Holbrook KA; Yuspa SH
    J Cell Biol; 1993 Mar; 120(5):1251-61. PubMed ID: 7679677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 'hot-spot' mutation alters the mechanical properties of keratin filament networks.
    Ma L; Yamada S; Wirtz D; Coulombe PA
    Nat Cell Biol; 2001 May; 3(5):503-6. PubMed ID: 11331879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Keratins in health and disease.
    Toivola DM; Boor P; Alam C; Strnad P
    Curr Opin Cell Biol; 2015 Feb; 32():73-81. PubMed ID: 25599598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletions in epidermal keratins leading to alterations in filament organization in vivo and in intermediate filament assembly in vitro.
    Coulombe PA; Chan YM; Albers K; Fuchs E
    J Cell Biol; 1990 Dec; 111(6 Pt 2):3049-64. PubMed ID: 1702787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of keratin intermediate filament assembly by single amino acid exchanges in the consensus sequence at the C-terminal end of the rod domain.
    Hatzfeld M; Weber K
    J Cell Sci; 1991 Jun; 99 ( Pt 2)():351-62. PubMed ID: 1715875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural heterogeneity of cellular K5/K14 filaments as revealed by cryo-electron microscopy.
    Weber MS; Eibauer M; Sivagurunathan S; Magin TM; Goldman RD; Medalia O
    Elife; 2021 Jul; 10():. PubMed ID: 34323216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics of soft epithelial keratin networks depend on modular filament assembly kinetics.
    Deek J; Hecht F; Rossetti L; Wißmiller K; Bausch AR
    Acta Biomater; 2016 Oct; 43():218-229. PubMed ID: 27403885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments.
    Flitney EW; Kuczmarski ER; Adam SA; Goldman RD
    FASEB J; 2009 Jul; 23(7):2110-9. PubMed ID: 19246484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of K5 and K14 head, tail, and R/K L L E G E domains in keratin filament assembly in vitro.
    Wilson AK; Coulombe PA; Fuchs E
    J Cell Biol; 1992 Oct; 119(2):401-14. PubMed ID: 1383231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.