BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11809935)

  • 1. Selection of catalytically active biotin ligase and trypsin mutants by phage display.
    Heinis C; Huber A; Demartis S; Bertschinger J; Melkko S; Lozzi L; Neri P; Neri D
    Protein Eng; 2001 Dec; 14(12):1043-52. PubMed ID: 11809935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategy for the isolation of catalytic activities from repertoires of enzymes displayed on phage.
    Demartis S; Huber A; Viti F; Lozzi L; Giovannoni L; Neri P; Winter G; Neri D
    J Mol Biol; 1999 Feb; 286(2):617-33. PubMed ID: 9973575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity.
    Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC
    Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of an active enzyme by phage display on the basis of the enzyme's catalytic activity in vivo.
    Fujita S; Taki T; Taira K
    Chembiochem; 2005 Feb; 6(2):315-21. PubMed ID: 15678423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Display of active subtilisin 309 on phage: analysis of parameters influencing the selection of subtilisin variants with changed substrate specificity from libraries using phosphonylating inhibitors.
    Legendre D; Laraki N; Gräslund T; Bjørnvad ME; Bouchet M; Nygren PA; Borchert TV; Fastrez J
    J Mol Biol; 2000 Feb; 296(1):87-102. PubMed ID: 10656819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotin-tagged proteins: Reagents for efficient ELISA-based serodiagnosis and phage display-based affinity selection.
    Verma V; Kaur C; Grover P; Gupta A; Chaudhary VK
    PLoS One; 2018; 13(1):e0191315. PubMed ID: 29360877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An immobilized biotin ligase: surface display of Escherichia coli BirA on Saccharomyces cerevisiae.
    Parthasarathy R; Bajaj J; Boder ET
    Biotechnol Prog; 2005; 21(6):1627-31. PubMed ID: 16321044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of protein substrate presentation in the post-translational attachment of biotin to biotin domains.
    Polyak SW; Chapman-Smith A; Mulhern TD; Cronan JE; Wallace JC
    J Biol Chem; 2001 Feb; 276(5):3037-45. PubMed ID: 11042165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of specificity and catalysis in trypsin by structural analysis of site-directed mutants.
    Sprang SR; Fletterick RJ; Gráf L; Rutter WJ; Craik CS
    Crit Rev Biotechnol; 1988; 8(3):225-36. PubMed ID: 3063392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of valency in the selection of anti-carbohydrate single-chain Fvs from phage display libraries.
    MacKenzie R; To R
    J Immunol Methods; 1998 Nov; 220(1-2):39-49. PubMed ID: 9839924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial Peptide Display for the Selection of Novel Biotinylating Enzymes.
    Granhøj J; Dimke H; Svenningsen P
    J Vis Exp; 2019 Oct; (152):. PubMed ID: 31633696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The wing of a winged helix-turn-helix transcription factor organizes the active site of BirA, a bifunctional repressor/ligase.
    Chakravartty V; Cronan JE
    J Biol Chem; 2013 Dec; 288(50):36029-39. PubMed ID: 24189073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bacterial display system for effective selection of protein-biotin ligase BirA variants with novel peptide specificity.
    Granhøj J; Dimke H; Svenningsen P
    Sci Rep; 2019 Mar; 9(1):4118. PubMed ID: 30858523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phagemid vector using the E. coli phage shock promoter facilitates phage display of toxic proteins.
    Beekwilder J; Rakonjac J; Jongsma M; Bosch D
    Gene; 1999 Mar; 228(1-2):23-31. PubMed ID: 10072755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic turnover-based phage selection for engineering the substrate specificity of Sfp phosphopantetheinyl transferase.
    Sunbul M; Marshall NJ; Zou Y; Zhang K; Yin J
    J Mol Biol; 2009 Apr; 387(4):883-98. PubMed ID: 19340948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phage display of single-chain antibody constructs.
    Benhar I; Reiter Y
    Curr Protoc Immunol; 2002 May; Chapter 10():Unit 10.19B. PubMed ID: 18432867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in Escherichia coli.
    Smith PA; Tripp BC; DiBlasio-Smith EA; Lu Z; LaVallie ER; McCoy JM
    Nucleic Acids Res; 1998 Mar; 26(6):1414-20. PubMed ID: 9490786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of a high affinity inhibitor of urokinase-type plasminogen activator by phage display of ecotin.
    Wang CI; Yang Q; Craik CS
    J Biol Chem; 1995 May; 270(20):12250-6. PubMed ID: 7744876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phage display of proteases and macromolecular inhibitors.
    Wang CI; Yang Q; Craik CS
    Methods Enzymol; 1996; 267():52-68. PubMed ID: 8743309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo biotinylated proteins as targets for phage-display selection experiments.
    Scholle MD; Collart FR; Kay BK
    Protein Expr Purif; 2004 Sep; 37(1):243-52. PubMed ID: 15294305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.