These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 11810207)
1. Acyl-coenzyme A binding protein expression is fibre-type specific in rat skeletal muscle but not affected by moderate endurance training. Franch J; Andersen JL; Jensen J; Pedersen PK; Knudsen J Pflugers Arch; 2002 Jan; 443(3):387-93. PubMed ID: 11810207 [TBL] [Abstract][Full Text] [Related]
2. Different metabolic adaptation of heart and skeletal muscles to moderate-intensity treadmill training in the rat. Zonderland ML; Bär PR; Reijneveld JC; Spruijt BM; Keizer HA; Glatz JF Eur J Appl Physiol Occup Physiol; 1999 Apr; 79(5):391-6. PubMed ID: 10208246 [TBL] [Abstract][Full Text] [Related]
3. Acyl-CoA binding protein expression is fiber type- specific and elevated in muscles from the obese insulin-resistant Zucker rat. Franch J; Knudsen J; Ellis BA; Pedersen PK; Cooney GJ; Jensen J Diabetes; 2002 Feb; 51(2):449-54. PubMed ID: 11812754 [TBL] [Abstract][Full Text] [Related]
4. Effect of endurance training and/or fish oil supplemented diet on cytoplasmic fatty acid binding protein in rat skeletal muscles and heart. Clavel S; Farout L; Briand M; Briand Y; Jouanel P Eur J Appl Physiol; 2002 Jul; 87(3):193-201. PubMed ID: 12111278 [TBL] [Abstract][Full Text] [Related]
5. Effect of endurance training on oestrogen receptor alpha expression in different rat skeletal muscle type. Lemoine S; Granier P; Tiffoche C; Berthon PM; Thieulant ML; Carré F; Delamarche P Acta Physiol Scand; 2002 Jul; 175(3):211-7. PubMed ID: 12100360 [TBL] [Abstract][Full Text] [Related]
6. Differential developmental programming by early protein restriction of rat skeletal muscle according to its fibre-type composition. da Silva Aragão R; Guzmán-Quevedo O; Pérez-García G; Toscano AE; Gois Leandro C; Manhães-de-Castro R; Bolaños-Jiménez F Acta Physiol (Oxf); 2014 Jan; 210(1):70-83. PubMed ID: 23362831 [TBL] [Abstract][Full Text] [Related]
7. Time course of the effects of a high-fat diet and voluntary exercise on muscle enzyme activity in Long-Evans rats. Cheng B; Karamizrak O; Noakes TD; Dennis SC; Lambert EV Physiol Behav; 1997 May; 61(5):701-5. PubMed ID: 9145940 [TBL] [Abstract][Full Text] [Related]
8. Induction of hepatic acyl-CoA-binding protein and liver fatty acid-binding protein by perfluorodecanoic acid in rats. Lack of correlation with hepatic long-chain acyl-CoA levels. Sterchele PF; Vanden Heuvel JP; Davis JW; Shrago E; Knudsen J; Peterson RE Biochem Pharmacol; 1994 Aug; 48(5):955-66. PubMed ID: 8093108 [TBL] [Abstract][Full Text] [Related]
9. Alteration of regulatory enzyme activities in fast-twitch and slow-twitch muscles and muscle fibres in low-intensity endurance-trained rats. Tikkanen HO; Näveri HK; Härkönen MH Eur J Appl Physiol Occup Physiol; 1995; 70(4):281-7. PubMed ID: 7649137 [TBL] [Abstract][Full Text] [Related]
10. Endurance training increases FFA oxidation and reduces triacylglycerol utilization in contracting rat soleus. Dyck DJ; Miskovic D; Code L; Luiken JJ; Bonen A Am J Physiol Endocrinol Metab; 2000 May; 278(5):E778-85. PubMed ID: 10780932 [TBL] [Abstract][Full Text] [Related]
12. Muscle type-specific fatty acid metabolism in insulin resistance: an integrated in vivo study in Zucker diabetic fatty rats. Beha A; Juretschke HP; Kuhlmann J; Neumann-Haefelin C; Belz U; Gerl M; Kramer W; Roden M; Herling AW Am J Physiol Endocrinol Metab; 2006 May; 290(5):E989-97. PubMed ID: 16380389 [TBL] [Abstract][Full Text] [Related]
13. Interaction of acyl-CoA binding protein (ACBP) on processes for which acyl-CoA is a substrate, product or inhibitor. Rasmussen JT; Rosendal J; Knudsen J Biochem J; 1993 Jun; 292 ( Pt 3)(Pt 3):907-13. PubMed ID: 8318018 [TBL] [Abstract][Full Text] [Related]
14. Endurance training adaptations modulate the redox-force relationship of rat isolated slow-twitch skeletal muscles. Plant DR; Gregorevic P; Warmington SA; Williams DA; Lynch GS Clin Exp Pharmacol Physiol; 2003; 30(1-2):77-81. PubMed ID: 12542458 [TBL] [Abstract][Full Text] [Related]
15. Adaptive responses of hypertrophying skeletal muscle to endurance training. Stone J; Brannon T; Haddad F; Qin A; Baldwin KM J Appl Physiol (1985); 1996 Aug; 81(2):665-72. PubMed ID: 8872632 [TBL] [Abstract][Full Text] [Related]
16. Endurance training: volume-dependent adaptational changes in myosin. Seene T; Alev K; Kaasik P; Pehme A; Parring AM Int J Sports Med; 2005 Dec; 26(10):815-21. PubMed ID: 16320163 [TBL] [Abstract][Full Text] [Related]
17. Different adaptations of alpha-actinin isoforms to exercise training in rat skeletal muscles. Ogura Y; Naito H; Kakigi R; Akema T; Sugiura T; Katamoto S; Aoki J Acta Physiol (Oxf); 2009 Jul; 196(3):341-9. PubMed ID: 19040707 [TBL] [Abstract][Full Text] [Related]
18. Adaptations in metabolic capacity of rat soleus after paralysis. Otis JS; Roy RR; Edgerton VR; Talmadge RJ J Appl Physiol (1985); 2004 Feb; 96(2):584-96. PubMed ID: 14565962 [TBL] [Abstract][Full Text] [Related]
19. Combined effects of hypoxia and endurance training on lipid metabolism in rat skeletal muscle. Galbès O; Goret L; Caillaud C; Mercier J; Obert P; Candau R; Py G Acta Physiol (Oxf); 2008 Jun; 193(2):163-73. PubMed ID: 18081885 [TBL] [Abstract][Full Text] [Related]
20. Endurance but not resistance training increases intra-myocellular lipid content and β-hydroxyacyl coenzyme A dehydrogenase activity in active elderly men. Ngo KT; Denis C; Saafi MA; Feasson L; Verney J Acta Physiol (Oxf); 2012 May; 205(1):133-44. PubMed ID: 22017921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]