These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 11810247)
1. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Ogihara Y; Isono K; Kojima T; Endo A; Hanaoka M; Shiina T; Terachi T; Utsugi S; Murata M; Mori N; Takumi S; Ikeo K; Gojobori T; Murai R; Murai K; Matsuoka Y; Ohnishi Y; Tajiri H; Tsunewaki K Mol Genet Genomics; 2002 Jan; 266(5):740-6. PubMed ID: 11810247 [TBL] [Abstract][Full Text] [Related]
2. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. Maier RM; Neckermann K; Igloi GL; Kössel H J Mol Biol; 1995 Sep; 251(5):614-28. PubMed ID: 7666415 [TBL] [Abstract][Full Text] [Related]
3. In silico analysis of microsatellites in organellar genomes of major cereals for understanding their phylogenetic relationships. Rajendrakumar P; Biswal AK; Balachandran SM; Sundaram RM In Silico Biol; 2008; 8(2):87-104. PubMed ID: 18928198 [TBL] [Abstract][Full Text] [Related]
4. The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages. Pombert JF; Otis C; Lemieux C; Turmel M Mol Biol Evol; 2005 Sep; 22(9):1903-18. PubMed ID: 15930151 [TBL] [Abstract][Full Text] [Related]
5. Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Bossolini E; Wicker T; Knobel PA; Keller B Plant J; 2007 Feb; 49(4):704-17. PubMed ID: 17270010 [TBL] [Abstract][Full Text] [Related]
6. In-depth view of structure, activity, and evolution of rice chromosome 10. Rice Chromosome 10 Sequencing Consortium Science; 2003 Jun; 300(5625):1566-9. PubMed ID: 12791992 [TBL] [Abstract][Full Text] [Related]
7. Pattern and rate of indel evolution inferred from whole chloroplast intergenic regions in sugarcane, maize and rice. Yamane K; Yano K; Kawahara T DNA Res; 2006 Oct; 13(5):197-204. PubMed ID: 17110395 [TBL] [Abstract][Full Text] [Related]
8. Characterization of chloroplast DNA microsatellites from Saccharum spp and related species. Melotto-Passarin DM; Tambarussi EV; Dressano K; De Martin VF; Carrer H Genet Mol Res; 2011 Sep; 10(3):2024-33. PubMed ID: 21948764 [TBL] [Abstract][Full Text] [Related]
9. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae). Do HD; Kim JS; Kim JH Gene; 2013 Nov; 530(2):229-35. PubMed ID: 23973725 [TBL] [Abstract][Full Text] [Related]
10. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Kuang DY; Wu H; Wang YL; Gao LM; Zhang SZ; Lu L Genome; 2011 Aug; 54(8):663-73. PubMed ID: 21793699 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the tobacco chloroplast DNA replication origin (oriB) downstream of the 23 S rRNA gene. Kunnimalaiyaan M; Shi F; Nielsen BL J Mol Biol; 1997 May; 268(2):273-83. PubMed ID: 9159470 [TBL] [Abstract][Full Text] [Related]
12. Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. Perry AS; Wolfe KH J Mol Evol; 2002 Nov; 55(5):501-8. PubMed ID: 12399924 [TBL] [Abstract][Full Text] [Related]
13. The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Chumley TW; Palmer JD; Mower JP; Fourcade HM; Calie PJ; Boore JL; Jansen RK Mol Biol Evol; 2006 Nov; 23(11):2175-90. PubMed ID: 16916942 [TBL] [Abstract][Full Text] [Related]
14. The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Wolf PG; Karol KG; Mandoli DF; Kuehl J; Arumuganathan K; Ellis MW; Mishler BD; Kelch DG; Olmstead RG; Boore JL Gene; 2005 May; 350(2):117-28. PubMed ID: 15788152 [TBL] [Abstract][Full Text] [Related]
15. Gene-containing regions of wheat and the other grass genomes. Sandhu D; Gill KS Plant Physiol; 2002 Mar; 128(3):803-11. PubMed ID: 11891237 [TBL] [Abstract][Full Text] [Related]
16. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Guisinger MM; Kuehl JV; Boore JL; Jansen RK Mol Biol Evol; 2011 Jan; 28(1):583-600. PubMed ID: 20805190 [TBL] [Abstract][Full Text] [Related]
17. The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Chung HJ; Jung JD; Park HW; Kim JH; Cha HW; Min SR; Jeong WJ; Liu JR Plant Cell Rep; 2006 Dec; 25(12):1369-79. PubMed ID: 16835751 [TBL] [Abstract][Full Text] [Related]
19. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. Kim KJ; Lee HL DNA Res; 2004 Aug; 11(4):247-61. PubMed ID: 15500250 [TBL] [Abstract][Full Text] [Related]
20. Genetic diversity and evolutionary relationships in genus Oryza revealed by using highly variable regions of chloroplast DNA. Kumagai M; Wang L; Ueda S Gene; 2010 Aug; 462(1-2):44-51. PubMed ID: 20450965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]