These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11810637)

  • 1. Targeted expression of tetanus neurotoxin interferes with behavioral responses to sensory input in Drosophila.
    Keller A; Sweeney ST; Zars T; O'Kane CJ; Heisenberg M
    J Neurobiol; 2002 Feb; 50(3):221-33. PubMed ID: 11810637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blocking sensory inputs to identified antennal glomeruli selectively modifies odorant perception in Drosophila.
    Devaud JM; Keane J; Ferrús A
    J Neurobiol; 2003 Jul; 56(1):1-12. PubMed ID: 12767028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of synaptic transmission or clock-gene-product oscillations in circadian pacemaker cells of Drosophila cause abnormal behavioral rhythms.
    Kaneko M; Park JH; Cheng Y; Hardin PE; Hall JC
    J Neurobiol; 2000 Jun; 43(3):207-33. PubMed ID: 10842235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted expression of tetanus toxin reveals sets of neurons involved in larval locomotion in Drosophila.
    Suster ML; Martin JR; Sung C; Robinow S
    J Neurobiol; 2003 May; 55(2):233-46. PubMed ID: 12672020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of serotonergic neurons in the Drosophila larval response to light.
    Rodriguez Moncalvo VG; Campos AR
    BMC Neurosci; 2009 Jun; 10():66. PubMed ID: 19549295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smell and taste perception in Drosophila melanogaster larva: toxin expression studies in chemosensory neurons.
    Heimbeck G; Bugnon V; Gendre N; Häberlin C; Stocker RF
    J Neurosci; 1999 Aug; 19(15):6599-609. PubMed ID: 10414987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct functions of neuronal synaptobrevin in developing and mature fly photoreceptors.
    Rister J; Heisenberg M
    J Neurobiol; 2006 Oct; 66(12):1271-84. PubMed ID: 16967508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fixation and locomotor activity are impaired by inducing tetanus toxin expression in adult Drosophila brain.
    Xiong Y; Lv H; Gong Z; Liu L
    Fly (Austin); 2010; 4(3):194-203. PubMed ID: 20657190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase.
    Friggi-Grelin F; Coulom H; Meller M; Gomez D; Hirsh J; Birman S
    J Neurobiol; 2003 Mar; 54(4):618-27. PubMed ID: 12555273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of the central nervous system neuroblast proliferation repressor ana leads to defects in larval olfactory behavior.
    Park Y; Caldwell MC; Datta S
    J Neurobiol; 1997 Aug; 33(2):199-211. PubMed ID: 9240375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential potencies of effector genes in adult Drosophila.
    Thum AS; Knapek S; Rister J; Dierichs-Schmitt E; Heisenberg M; Tanimoto H
    J Comp Neurol; 2006 Sep; 498(2):194-203. PubMed ID: 16856137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serotonin is critical for rewarded olfactory short-term memory in Drosophila.
    Sitaraman D; LaFerriere H; Birman S; Zars T
    J Neurogenet; 2012 Jun; 26(2):238-44. PubMed ID: 22436011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects.
    Sweeney ST; Broadie K; Keane J; Niemann H; O'Kane CJ
    Neuron; 1995 Feb; 14(2):341-51. PubMed ID: 7857643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell types and coincident synapses in the ellipsoid body of Drosophila.
    Martín-Peña A; Acebes A; Rodríguez JR; Chevalier V; Casas-Tinto S; Triphan T; Strauss R; Ferrús A
    Eur J Neurosci; 2014 May; 39(10):1586-601. PubMed ID: 24605774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of synaptic connectivity: levels of Fasciclin II influence synaptic growth in the Drosophila CNS.
    Baines RA; Seugnet L; Thompson A; Salvaterra PM; Bate M
    J Neurosci; 2002 Aug; 22(15):6587-95. PubMed ID: 12151538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted expression of tetanus toxin: a new tool to study the neurobiology of behavior.
    Martin JR; Keller A; Sweeney ST
    Adv Genet; 2002; 47():1-47. PubMed ID: 12000095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant and truncated tetanus neurotoxin light chain: cloning, expression, purification, and proteolytic activity.
    Tonello F; Pellizzari R; Pasqualato S; Grandi G; Peggion E; Montecucco C
    Protein Expr Purif; 1999 Mar; 15(2):221-7. PubMed ID: 10049679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor control by the central complex in Drosophila-An analysis of the tay bridge mutant.
    Poeck B; Triphan T; Neuser K; Strauss R
    Dev Neurobiol; 2008 Jul; 68(8):1046-58. PubMed ID: 18446784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potencies of effector genes in silencing odor-guided behavior in
    Retzke T; Thoma M; Hansson BS; Knaden M
    J Exp Biol; 2017 May; 220(Pt 10):1812-1819. PubMed ID: 28235908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered electrical properties in Drosophila neurons developing without synaptic transmission.
    Baines RA; Uhler JP; Thompson A; Sweeney ST; Bate M
    J Neurosci; 2001 Mar; 21(5):1523-31. PubMed ID: 11222642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.