These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11811952)

  • 1. The specificity in vivo of two distinct methionine aminopeptidases in Saccharomyces cerevisiae.
    Chen S; Vetro JA; Chang YH
    Arch Biochem Biophys; 2002 Feb; 398(1):87-93. PubMed ID: 11811952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of a dominant negative mutant of yeast methionine aminopeptidase type 2 in Saccharomyces cerevisiae.
    Vetro JA; Dummitt B; Micka WS; Chang YH
    J Cell Biochem; 2005 Mar; 94(4):656-68. PubMed ID: 15547949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast methionine aminopeptidase type 1 is ribosome-associated and requires its N-terminal zinc finger domain for normal function in vivo.
    Vetro JA; Chang YH
    J Cell Biochem; 2002; 85(4):678-88. PubMed ID: 11968008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dominant negative mutation in Saccharomyces cerevisiae methionine aminopeptidase-1 affects catalysis and interferes with the function of methionine aminopeptidase-2.
    Klinkenberg M; Ling C; Chang YH
    Arch Biochem Biophys; 1997 Nov; 347(2):193-200. PubMed ID: 9367524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminal methionine removal and methionine metabolism in Saccharomyces cerevisiae.
    Dummitt B; Micka WS; Chang YH
    J Cell Biochem; 2003 Aug; 89(5):964-74. PubMed ID: 12874831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and mutational studies of the number of interacting divalent cations required by bacterial and human methionine aminopeptidases.
    Hu XV; Chen X; Han KC; Mildvan AS; Liu JO
    Biochemistry; 2007 Nov; 46(44):12833-43. PubMed ID: 17929833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases.
    Li X; Chang YH
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12357-61. PubMed ID: 8618900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence specificity and efficiency of protein N-terminal methionine elimination in wheat-embryo cell-free system.
    Kanno T; Kitano M; Kato R; Omori A; Endo Y; Tozawa Y
    Protein Expr Purif; 2007 Mar; 52(1):59-65. PubMed ID: 17123829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases.
    Xiao Q; Zhang F; Nacev BA; Liu JO; Pei D
    Biochemistry; 2010 Jul; 49(26):5588-99. PubMed ID: 20521764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of the function of type 1 human methionine aminopeptidase during cell cycle progression.
    Hu X; Addlagatta A; Lu J; Matthews BW; Liu JO
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18148-53. PubMed ID: 17114291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional expression of human methionine aminopeptidase type 1 in Saccharomyces cerevisiae.
    Dummitt B; Fei Y; Chang YH
    Protein Pept Lett; 2002 Aug; 9(4):295-303. PubMed ID: 12144506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Omics Assisted N-terminal Proteoform and Protein Expression Profiling On Methionine Aminopeptidase 1 (MetAP1) Deletion.
    Jonckheere V; FijaƂkowska D; Van Damme P
    Mol Cell Proteomics; 2018 Apr; 17(4):694-708. PubMed ID: 29317475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-expression of glutathione S-transferase with methionine aminopeptidase: a system of producing enriched N-terminal processed proteins in Escherichia coli.
    Hwang DD; Liu LF; Kuan IC; Lin LY; Tam TC; Tam MF
    Biochem J; 1999 Mar; 338 ( Pt 2)(Pt 2):335-42. PubMed ID: 10024508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity.
    Li JY; Cui YM; Chen LL; Gu M; Li J; Nan FJ; Ye QZ
    J Biol Chem; 2004 May; 279(20):21128-34. PubMed ID: 14976199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two continuous spectrophotometric assays for methionine aminopeptidase.
    Zhou Y; Guo XC; Yi T; Yoshimoto T; Pei D
    Anal Biochem; 2000 Apr; 280(1):159-65. PubMed ID: 10805534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase.
    Liao YD; Jeng JC; Wang CF; Wang SC; Chang ST
    Protein Sci; 2004 Jul; 13(7):1802-10. PubMed ID: 15215523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Type I methionine aminopeptidase from Saccharomyces cerevisiae is a potential target for antifungal drug screening.
    Chen LL; Li J; Li JY; Luo QL; Mao WF; Shen Q; Nan FJ; Ye QZ
    Acta Pharmacol Sin; 2004 Jul; 25(7):907-14. PubMed ID: 15210064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation.
    Moerschell RP; Hosokawa Y; Tsunasawa S; Sherman F
    J Biol Chem; 1990 Nov; 265(32):19638-43. PubMed ID: 2174047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox regulation of methionine aminopeptidase 2 activity.
    Chiu J; Wong JW; Hogg PJ
    J Biol Chem; 2014 May; 289(21):15035-43. PubMed ID: 24700462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.