These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11813803)

  • 1. QSAR modeling of large heterogeneous sets of molecules.
    Devillers J
    SAR QSAR Environ Res; 2001; 12(6):515-28. PubMed ID: 11813803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting modes of toxic action from chemical structure: an overview.
    Bradbury SP
    SAR QSAR Environ Res; 1994; 2(1-2):89-104. PubMed ID: 8790641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning neural and fuzzy-neural networks for toxicity modeling.
    Mazzatorta P; Benfenati E; Neagu CD; Gini G
    J Chem Inf Comput Sci; 2003; 43(2):513-8. PubMed ID: 12653515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid toxicity prediction of organic chemicals to Chlorella vulgaris using quantitative structure-activity relationships methods.
    Xia B; Liu K; Gong Z; Zheng B; Zhang X; Fan B
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):787-94. PubMed ID: 18950860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study.
    Vracko M; Bandelj V; Barbieri P; Benfenati E; Chaudhry Q; Cronin M; Devillers J; Gallegos A; Gini G; Gramatica P; Helma C; Mazzatorta P; Neagu D; Netzeva T; Pavan M; Patlewicz G; Randić M; Tsakovska I; Worth A
    SAR QSAR Environ Res; 2006 Jun; 17(3):265-84. PubMed ID: 16815767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of random forest approach to QSAR prediction of aquatic toxicity.
    Polishchuk PG; Muratov EN; Artemenko AG; Kolumbin OG; Muratov NN; Kuz'min VE
    J Chem Inf Model; 2009 Nov; 49(11):2481-8. PubMed ID: 19860412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creation of predictive models of aquatic toxicity of environmental pollutants with different mechanisms of action on the basis of molecular similarity and HYBOT descriptors.
    Raevsky OA; Dearden JC
    SAR QSAR Environ Res; 2004; 15(5-6):433-48. PubMed ID: 15669700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-linear modeling of bioconcentration using partition coefficients for narcotic chemicals.
    Dimitrov SD; Mekenyan OG; Walker JD
    SAR QSAR Environ Res; 2002 Mar; 13(1):177-84. PubMed ID: 12074386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR model for predicting pesticide aquatic toxicity.
    Mazzatorta P; Smiesko M; Lo Piparo E; Benfenati E
    J Chem Inf Model; 2005; 45(6):1767-74. PubMed ID: 16309283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).
    Papa E; Villa F; Gramatica P
    J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PLS-QSAR of the adult and developmental toxicity of chemicals to Hydra attenuata.
    Devillers J; Chezeau A; Thybaud E
    SAR QSAR Environ Res; 2002 Dec; 13(7-8):705-12. PubMed ID: 12570047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ECOSAR model performance with a large test set of industrial chemicals.
    Reuschenbach P; Silvani M; Dammann M; Warnecke D; Knacker T
    Chemosphere; 2008 May; 71(10):1986-95. PubMed ID: 18262586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable selection for QSAR by artificial ant colony systems.
    Izrailev S; Agrafiotis DK
    SAR QSAR Environ Res; 2002; 13(3-4):417-23. PubMed ID: 12184383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity.
    Mekenyan OG; Veith GD
    SAR QSAR Environ Res; 1993; 1(4):335-44. PubMed ID: 8790637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust QSAR models using Bayesian regularized neural networks.
    Burden FR; Winkler DA
    J Med Chem; 1999 Aug; 42(16):3183-7. PubMed ID: 10447964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of structure-activity relationships (SARs) in the aquatic toxicity evaluation of discrete organic chemicals.
    Clements RG; Nabholz JV; Zeeman MG; Auer CM
    SAR QSAR Environ Res; 1995; 3(3):203-15. PubMed ID: 8564855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electronic factor in QSAR: MO-parameters, competing interactions, reactivity and toxicity.
    Mekenyan OG; Veith GD
    SAR QSAR Environ Res; 1994; 2(1-2):129-43. PubMed ID: 8790643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-toxicity modeling of pesticides to honey bees.
    Devillers J; Pham-Delègue MH; Decourtye A; Budzinski H; Cluzeau S; Maurin G
    SAR QSAR Environ Res; 2002 Dec; 13(7-8):641-8. PubMed ID: 12570042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.