These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 11814168)

  • 1. The true distribution and accumulation of radiocaesium in stem of Scots pine (Pinus sylvestris L.).
    Thiry Y; Goor F; Riesen T
    J Environ Radioact; 2002; 58(2-3):243-59. PubMed ID: 11814168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations.
    Goor F; Thiry Y
    Sci Total Environ; 2004 Jun; 325(1-3):163-80. PubMed ID: 15144787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 137Cs distribution among annual rings of different tree species contaminated after the Chernobyl accident.
    Soukhova NV; Fesenko SV; Klein D; Spiridonov SI; Sanzharova NI; Badot PM
    J Environ Radioact; 2003; 65(1):19-28. PubMed ID: 12683726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiocaesium accumulation in stemwood: integrated approach at the scale of forest stands for contaminated Scots pine in Belarus.
    Goor F; Thiry Y; Delvaux B
    J Environ Manage; 2007 Oct; 85(1):129-36. PubMed ID: 17029757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Scots pine (Pinus sylvestris L.) plantings on long term (137)Cs and (90)Sr recycling from a waste burial site in the Chernobyl Red Forest.
    Thiry Y; Colle C; Yoschenko V; Levchuk S; Van Hees M; Hurtevent P; Kashparov V
    J Environ Radioact; 2009 Dec; 100(12):1062-8. PubMed ID: 19525043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fertilisation on the potassium and radiocaesium distribution in tree stands (Pinus sylvestris L.) and peat on a pine mire.
    Kaunisto S; Aro L; Rantavaara A
    Environ Pollut; 2002; 117(1):111-9. PubMed ID: 11843526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of processes governing long-term accumulation of 137Cs by forest trees following the Chernobyl accident.
    Fesenko SV; Soukhova NV; Sanzharova NI; Avila R; Spiridonov SI; Klein D; Lucot E; Badot PM
    Radiat Environ Biophys; 2001 Jun; 40(2):105-13. PubMed ID: 11484781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributions of
    Holiaka D; Yoschenko V; Levchuk S; Kashparov V
    J Environ Radioact; 2020 Oct; 222():106319. PubMed ID: 32565416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of origin of radiocaesium on the transfer from fallout to reindeer meat.
    Ahman B; Wright SM; Howard BJ
    Sci Total Environ; 2001 Oct; 278(1-3):171-81. PubMed ID: 11669265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiocaesium soil-to-wood transfer in commercial willow short rotation coppice on contaminated farm land.
    Gommers A; Gäfvert T; Smolders E; Merckx R; Vandenhove H
    J Environ Radioact; 2005; 78(3):267-87. PubMed ID: 15511563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The distribution of 137Cs and 90Sr in the biomass of pine trees planted in 1987-1988 in the near zone of the Chernobyl nuclear power plant.
    Buzinny M; Los' I; Shepelevich K
    Appl Radiat Isot; 2000 Apr; 52(4):905-10. PubMed ID: 10800728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Modeling of Cs-137 vertical soil transfer by a tree root system].
    Bulgakov AA; Konoplev AV
    Radiats Biol Radioecol; 2002; 42(5):556-60. PubMed ID: 12449825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 137Cs availability for soil to understory transfer in different types of forest ecosystems.
    Fesenko SV; Soukhova NV; Sanzharova NI; Avila R; Spiridonov SI; Klein D; Badot PM
    Sci Total Environ; 2001 Mar; 269(1-3):87-103. PubMed ID: 11305346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The assessment of 137Cs accumulation by pine tree plantations in the closest radioactive fallouts originated from the Chernobyl Nuclear Power Plant].
    Perevolotskiĭ AN; Bulavik IM; Perevolotskaia TV; Paskrobko LA; Andrush SN
    Radiats Biol Radioecol; 2007; 47(6):746-52. PubMed ID: 18380336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histological changes in Pinus sylvestris L. in the proximal-zone around the Chernobyl power plant.
    Skuterud L; Goltsova NI; Naeumann R; Sikkeland T; Lindmo T
    Sci Total Environ; 1994 Dec; 157(1-3):387-97. PubMed ID: 7839122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [137Cs and 90Sr distribution peculiarities in soil and accumulation by pine tree wood and bark depending on edaphotops].
    Perevolotskoĭ AN; Bulavik IM; Perevolotskaia TV; Paskrobko LA; Andrush SN
    Radiats Biol Radioecol; 2007; 47(4):463-70. PubMed ID: 17953433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory experiments to predict changes in radiocaesium root uptake after flooding events.
    Camps M; Hillier S; Vidal M; Rauret G
    J Environ Radioact; 2003; 67(3):247-59. PubMed ID: 12691722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The role of vegetation cover in regulation of fluxes of the technogenic radionuclides at the different stages after radioactive fallout].
    Tsvetnova OB; Shcheglov AI
    Radiats Biol Radioecol; 2009; 49(2):158-65. PubMed ID: 19507683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of radiocesium and stable elements within a pine tree.
    Yoshida S; Watanabe M; Suzuki A
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):326-9. PubMed ID: 21543348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological half-time of radiocesium from Chernobyl debris and from nuclear weapons fallout as measured in a group of subjects from the south of Sweden.
    Rääf CL; Hemdal B; Mattsson S
    Health Phys; 2001 Oct; 81(4):366-77. PubMed ID: 11569632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.