These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11814226)

  • 1. Effects of parameter errors in the simulation of transcranial focused ultrasound.
    Vaughan TE; Hynynen K
    Phys Med Biol; 2002 Jan; 47(1):37-45. PubMed ID: 11814226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull.
    Pichardo S; Moreno-Hernández C; Andrew Drainville R; Sin V; Curiel L; Hynynen K
    Phys Med Biol; 2017 Aug; 62(17):6938-6962. PubMed ID: 28783716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial ultrasound simulation with uncertainty estimation.
    Stanziola A; Pineda-Pardo JA; Treeby B
    JASA Express Lett; 2023 May; 3(5):. PubMed ID: 37166991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New semi-analytical method for fast transcranial ultrasonic field simulation.
    Angla C; Chouh H; Mondou P; Toullelan G; Perlin K; Brulon V; De Schlichting E; Larrat B; Gennisson JL; Chatillon S
    Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38537292
    [No Abstract]   [Full Text] [Related]  

  • 6. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans.
    Aubry JF; Tanter M; Pernot M; Thomas JL; Fink M
    J Acoust Soc Am; 2003 Jan; 113(1):84-93. PubMed ID: 12558249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.
    Miller GW; Eames M; Snell J; Aubry JF
    Med Phys; 2015 May; 42(5):2223-33. PubMed ID: 25979016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of CT image parameters and skull heterogeneity modeling on the accuracy of transcranial focused ultrasound simulations.
    Montanaro H; Pasquinelli C; Lee HJ; Kim H; Siebner HR; Kuster N; Thielscher A; Neufeld E
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33836508
    [No Abstract]   [Full Text] [Related]  

  • 9. Transcranial Phase Correction Using Pulse-Echo Ultrasound and Deep Learning: A 2-D Numerical Study.
    Tian Z; Olmstead M; Jing Y; Han A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jan; 71(1):117-126. PubMed ID: 38060357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hemisphere array for non-invasive ultrasound brain therapy and surgery.
    Clement GT; Sun J; Giesecke T; Hynynen K
    Phys Med Biol; 2000 Dec; 45(12):3707-19. PubMed ID: 11131194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of the Relationship Between CT Hounsfield Units and Acoustic Velocity and How It Changes With Photon Energy and Reconstruction Method.
    Webb TD; Leung SA; Rosenberg J; Ghanouni P; Dahl JJ; Pelc NJ; Pauly KB
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jul; 65(7):1111-1124. PubMed ID: 29993366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A unified model for the speed of sound in cranial bone based on genetic algorithm optimization.
    Connor CW; Clement GT; Hynynen K
    Phys Med Biol; 2002 Nov; 47(22):3925-44. PubMed ID: 12476974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of passive acoustic imaging in the human skull cavity using CT-based aberration corrections.
    Jones RM; O'Reilly MA; Hynynen K
    Med Phys; 2015 Jul; 42(7):4385-400. PubMed ID: 26133635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz.
    Marsac L; Chauvet D; La Greca R; Boch AL; Chaumoitre K; Tanter M; Aubry JF
    Int J Hyperthermia; 2017 Sep; 33(6):635-645. PubMed ID: 28540778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcranial ultrasound simulations: A review.
    Angla C; Larrat B; Gennisson JL; Chatillon S
    Med Phys; 2023 Feb; 50(2):1051-1072. PubMed ID: 36047387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the pressure field distribution in transcranial ultrasonic neurostimulation.
    Younan Y; Deffieux T; Larrat B; Fink M; Tanter M; Aubry JF
    Med Phys; 2013 Aug; 40(8):082902. PubMed ID: 23927357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simulation study on the sensitivity of transcranial ray-tracing ultrasound modeling to skull properties.
    Drainville RA; Chatillon S; Moore D; Snell J; Padilla F; Lafon C
    J Acoust Soc Am; 2023 Aug; 154(2):1211-1225. PubMed ID: 37610718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-invasive method for focusing ultrasound through the human skull.
    Clement GT; Hynynen K
    Phys Med Biol; 2002 Apr; 47(8):1219-36. PubMed ID: 12030552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral image reconstruction for transcranial ultrasound measurement.
    Clement GT
    Phys Med Biol; 2005 Dec; 50(23):5557-72. PubMed ID: 16306652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient method for transcranial ultrasound focus correction based on the coupling of boundary integrals and finite elements.
    Shen F; Fan F; Li F; Wang L; Wang R; Wang Y; Liu T; Wei C; Niu H
    Ultrasonics; 2024 Feb; 137():107181. PubMed ID: 37847943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.