BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11814347)

  • 1. Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus.
    Wilde C; Just I; Aktories K
    Biochemistry; 2002 Feb; 41(5):1539-44. PubMed ID: 11814347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M; Aktories K
    Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization.
    Wilde C; Vogelsgesang M; Aktories K
    Biochemistry; 2003 Aug; 42(32):9694-702. PubMed ID: 12911311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD.
    Evans HR; Sutton JM; Holloway DE; Ayriss J; Shone CC; Acharya KR
    J Biol Chem; 2003 Nov; 278(46):45924-30. PubMed ID: 12933793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site.
    Just I; Selzer J; Jung M; van Damme J; Vandekerckhove J; Aktories K
    Biochemistry; 1995 Jan; 34(1):334-40. PubMed ID: 7819216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the Clostridium limosum C3 exoenzyme.
    Vogelsgesang M; Stieglitz B; Herrmann C; Pautsch A; Aktories K
    FEBS Lett; 2008 Apr; 582(7):1032-6. PubMed ID: 18325337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel C3-like ADP-ribosyltransferase from Staphylococcus aureus modifying RhoE and Rnd3.
    Wilde C; Chhatwal GS; Schmalzing G; Aktories K; Just I
    J Biol Chem; 2001 Mar; 276(12):9537-42. PubMed ID: 11124969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational plasticity is crucial for C3-RhoA complex formation by ARTT-loop.
    Tsuge H; Yoshida T; Tsurumura T
    Pathog Dis; 2015 Dec; 73(9):ftv094. PubMed ID: 26474844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Glu173 as the critical amino acid residue for the ADP-ribosyltransferase activity of Clostridium botulinum C3 exoenzyme.
    Saito Y; Nemoto Y; Ishizaki T; Watanabe N; Morii N; Narumiya S
    FEBS Lett; 1995 Sep; 371(2):105-9. PubMed ID: 7672106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.
    Han S; Tainer JA
    Int J Med Microbiol; 2002 Feb; 291(6-7):523-9. PubMed ID: 11890553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the active-site structure of C3-like exoenzymes: involvement of glutamic acid in catalysis of ADP-ribosylation.
    Aktories K; Jung M; Böhmer J; Fritz G; Vandekerckhove J; Just I
    Biochimie; 1995; 77(5):326-32. PubMed ID: 8527485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NAD binding induces conformational changes in Rho ADP-ribosylating clostridium botulinum C3 exoenzyme.
    Ménétrey J; Flatau G; Stura EA; Charbonnier JB; Gas F; Teulon JM; Le Du MH; Boquet P; Menez A
    J Biol Chem; 2002 Aug; 277(34):30950-7. PubMed ID: 12029083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of RhoA by Clostridium botulinum C3 exoenzyme.
    Wilde C; Genth H; Aktories K; Just I
    J Biol Chem; 2000 Jun; 275(22):16478-83. PubMed ID: 10748216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rho GTPase Recognition by C3 Exoenzyme Based on C3-RhoA Complex Structure.
    Toda A; Tsurumura T; Yoshida T; Tsumori Y; Tsuge H
    J Biol Chem; 2015 Aug; 290(32):19423-32. PubMed ID: 26067270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD-binding site of the C3-like ADP-ribosyltransferase from Clostridium limosum.
    Jung M; Just I; van Damme J; Vandekerckhove J; Aktories K
    J Biol Chem; 1993 Nov; 268(31):23215-8. PubMed ID: 8226842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the catalytic site of the ADP-ribosyltransferase Clostridium botulinum C2 toxin by site-directed mutagenesis.
    Barth H; Preiss JC; Hofmann F; Aktories K
    J Biol Chem; 1998 Nov; 273(45):29506-11. PubMed ID: 9792657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation into the catalytic role for the tryptophan residues within domain III of Pseudomonas aeruginosa exotoxin A.
    Beattie BK; Prentice GA; Merrill AR
    Biochemistry; 1996 Dec; 35(48):15134-42. PubMed ID: 8952460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site mutation of the C3-like ADP-ribosyltransferase from Clostridium limosum--analysis of glutamic acid 174.
    Böhmer J; Jung M; Sehr P; Fritz G; Popoff M; Just I; Aktories K
    Biochemistry; 1996 Jan; 35(1):282-9. PubMed ID: 8555186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homology modeling and molecular dynamics studies of a novel C3-like ADP-ribosyltransferase.
    Xiao JF; Li ZS; Sun CC
    Bioorg Med Chem; 2004 May; 12(9):2035-41. PubMed ID: 15080907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.