These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11814598)

  • 1. Structural proteomics: developments in structure-to-function predictions.
    Norin M; Sundström M
    Trends Biotechnol; 2002 Feb; 20(2):79-84. PubMed ID: 11814598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PhyreRisk: A Dynamic Web Application to Bridge Genomics, Proteomics and 3D Structural Data to Guide Interpretation of Human Genetic Variants.
    Ofoegbu TC; David A; Kelley LA; Mezulis S; Islam SA; Mersmann SF; Strömich L; Vakser IA; Houlston RS; Sternberg MJE
    J Mol Biol; 2019 Jun; 431(13):2460-2466. PubMed ID: 31075275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based functional discovery of proteins: structural proteomics.
    Jung JW; Lee W
    J Biochem Mol Biol; 2004 Jan; 37(1):28-34. PubMed ID: 14761300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural proteomics: lessons learnt from the early case studies.
    Norin M; Sundström M
    Farmaco; 2002 Nov; 57(11):947-51. PubMed ID: 12484544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomics and regulomics: the yin and yang of functional genomics.
    Werner T
    Mass Spectrom Rev; 2004; 23(1):25-33. PubMed ID: 14625890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR in structural genomics to increase structural coverage of the protein universe: Delivered by Prof. Kurt Wüthrich on 7 July 2013 at the 38th FEBS Congress in St. Petersburg, Russia.
    Serrano P; Dutta SK; Proudfoot A; Mohanty B; Susac L; Martin B; Geralt M; Jaroszewski L; Godzik A; Elsliger M; Wilson IA; Wüthrich K
    FEBS J; 2016 Nov; 283(21):3870-3881. PubMed ID: 27154589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput 3D structural homology detection via NMR resonance assignment.
    Langmead CJ; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():278-89. PubMed ID: 16448021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TSTMP: target selection for structural genomics of human transmembrane proteins.
    Varga J; Dobson L; Reményi I; Tusnády GE
    Nucleic Acids Res; 2017 Jan; 45(D1):D325-D330. PubMed ID: 27924015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids.
    Kristensen DM; Ward RM; Lisewski AM; Erdin S; Chen BY; Fofanov VY; Kimmel M; Kavraki LE; Lichtarge O
    BMC Bioinformatics; 2008 Jan; 9():17. PubMed ID: 18190718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in structural proteomics for protein structure determination.
    Liu HL; Hsu JP
    Proteomics; 2005 May; 5(8):2056-68. PubMed ID: 15846841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural genomics: computational methods for structure analysis.
    Goldsmith-Fischman S; Honig B
    Protein Sci; 2003 Sep; 12(9):1813-21. PubMed ID: 12930981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural proteomics by NMR spectroscopy.
    Shin J; Lee W; Lee W
    Expert Rev Proteomics; 2008 Aug; 5(4):589-601. PubMed ID: 18761469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-GENOMICS: a database to compare structural and functional annotations of proteins between sequenced genomes.
    Fleming K; Müller A; MacCallum RM; Sternberg MJ
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D245-50. PubMed ID: 14681404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The structural coverage of the human proteome before and after AlphaFold.
    Porta-Pardo E; Ruiz-Serra V; Valentini S; Valencia A
    PLoS Comput Biol; 2022 Jan; 18(1):e1009818. PubMed ID: 35073311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural biology scales up.
    Nat Struct Biol; 2002 Jun; 9(6):405. PubMed ID: 12032549
    [No Abstract]   [Full Text] [Related]  

  • 16. Predicted role for the archease protein family based on structural and sequence analysis of TM1083 and MTH1598, two proteins structurally characterized through structural genomics efforts.
    Canaves JM
    Proteins; 2004 Jul; 56(1):19-27. PubMed ID: 15162483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring sequence-structure relationships in the tyrosine kinome space: functional classification of the binding specificity mechanisms for cancer therapeutics.
    Verkhivker GM
    Bioinformatics; 2007 Aug; 23(15):1919-26. PubMed ID: 17537753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural domain-domain interactions: assessment and comparison with protein-protein interaction data to improve the interactome.
    Prieto C; De Las Rivas J
    Proteins; 2010 Jan; 78(1):109-17. PubMed ID: 19731379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of structural genomics: from structure to function.
    Zhang C; Kim SH
    Curr Opin Chem Biol; 2003 Feb; 7(1):28-32. PubMed ID: 12547423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual dipolar couplings: synergy between NMR and structural genomics.
    Al-Hashimi HM; Patel DJ
    J Biomol NMR; 2002 Jan; 22(1):1-8. PubMed ID: 11885976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.