BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11814634)

  • 1. Submandibular gland tripeptide FEG (Phe-Glu-Gly) and analogues: keys to structure determination.
    Metwally E; Pires JM; Moore GJ; Befus DA; Davison JS; Mathison R
    Peptides; 2002 Jan; 23(1):193-9. PubMed ID: 11814634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation of intestinal and cardiovascular anaphylaxis by the salivary gland tripeptide FEG and its D-isomeric analog feG.
    Mathison R; Lo P; Moore G; Scott B; Davison JS
    Peptides; 1998; 19(6):1037-42. PubMed ID: 9700752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characteristics of the tripeptide feG accounting for different biological activities.
    Mathison R; Davison JS
    Proc West Pharmacol Soc; 2007; 50():101-4. PubMed ID: 18605243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tree-based algorithm for determining the effects of solvation on the structure of salivary gland tripeptide NH3+-D-PHE-D-GLU-GLY-COO-.
    Metwally E; Ismail HA; Davison JS; Mathison R
    Biophys J; 2003 Sep; 85(3):1503-11. PubMed ID: 12944268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tripeptide feG reduces endotoxin-provoked perturbation of intestinal motility and inflammation.
    Mathison R; Lo P; Tan D; Scott B; Davison JS
    Neurogastroenterol Motil; 2001 Dec; 13(6):599-603. PubMed ID: 11903921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tripeptide FEG ameliorates systemic inflammatory responses to rat intestinal anaphylaxis.
    Turesin F; Sadr A; Davison JS; Mathison R
    BMC Physiol; 2002 Aug; 2():13. PubMed ID: 12199907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carboxamide feG(NH2) inhibits endotoxin perturbation of intestinal motility.
    Tan D; Rougeot C; Davison JS; Mathison R
    Eur J Pharmacol; 2000 Dec; 409(2):203-5. PubMed ID: 11104835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agonist activity at the kinin B1 receptor: structural requirements of the central tetrapeptide.
    Rovero P; Pellegrini M; Di Fenza A; Meini S; Quartara L; Maggi CA; Formaggio F; Toniolo C; Mierke DF
    J Med Chem; 2001 Jan; 44(2):274-8. PubMed ID: 11170638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salivary gland derived peptides as a new class of anti-inflammatory agents: review of preclinical pharmacology of C-terminal peptides of SMR1 protein.
    Mathison RD; Davison JS; Befus AD; Gingerich DA
    J Inflamm (Lond); 2010 Sep; 7():49. PubMed ID: 20920210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a binding site for the anti-inflammatory tripeptide feG.
    Mathison RD; Davison JS; Metwally E
    Peptides; 2003 Aug; 24(8):1221-30. PubMed ID: 14612194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and activity profiles of novel cyclic opioid peptide monomers and dimers.
    Schiller PW; Nguyen TM; Lemieux C; Maziak LA
    J Med Chem; 1985 Dec; 28(12):1766-71. PubMed ID: 2999401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of leukocyte adhesion to heart by the tripeptides feG and feG(NH2).
    Mathison R; Woodman R; Davison JS
    Can J Physiol Pharmacol; 2001 Sep; 79(9):785-92. PubMed ID: 11599779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of allergic inflammation by C-terminal peptides of the prohormone submandibular rat 1 (SMR-1).
    Dery RE; Mathison R; Davison J; Befus AD
    Int Arch Allergy Immunol; 2001; 124(1-3):201-4. PubMed ID: 11306968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of neutrophil function by the tripeptide feG.
    Mathison RD; Befus AD; Davison JS; Woodman RC
    BMC Immunol; 2003 Mar; 4():3. PubMed ID: 12659660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching of turn conformation in an aspartate anion peptide fragment by NH . . . O- hydrogen bonds.
    Onoda A; Yamamoto H; Yamada Y; Lee K; Adachi S; Okamura TA; Yoshizawa-Kumagaye K; Nakajima K; Kawakami T; Aimoto S; Ueyama N
    Biopolymers; 2005; 80(2-3):233-48. PubMed ID: 15633197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential stereochemical requirements of mu vs. delta opioid receptors for ligand binding and signal transduction: development of a class of potent and highly delta-selective peptide antagonists.
    Schiller PW; Nguyen TM; Weltrowska G; Wilkes BC; Marsden BJ; Lemieux C; Chung NN
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11871-5. PubMed ID: 1334552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontline: Inhibition of allergen-induced pulmonary inflammation by the tripeptide feG: a mimetic of a neuro-endocrine pathway.
    Dery RE; Ulanova M; Puttagunta L; Stenton GR; James D; Merani S; Mathison R; Davison J; Befus AD
    Eur J Immunol; 2004 Dec; 34(12):3315-25. PubMed ID: 15549777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformationally restricted deltorphin analogues.
    Schiller PW; Weltrowska G; Nguyen TM; Wilkes BC; Chung NN; Lemieux C
    J Med Chem; 1992 Oct; 35(21):3956-61. PubMed ID: 1331451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tripeptide phenylalanine-(D) glutamate-(D) glycine modulates leukocyte infiltration and oxidative damage in rat injured spinal cord.
    Bao F; John SM; Chen Y; Mathison RD; Weaver LC
    Neuroscience; 2006 Jul; 140(3):1011-22. PubMed ID: 16581192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a model for the delta opioid receptor pharmacophore. 1. Conformationally restricted Tyr1 replacements in the cyclic delta receptor selective tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]OH (JOM-13).
    Mosberg HI; Lomize AL; Wang C; Kroona H; Heyl DL; Sobczyk-Kojiro K; Ma W; Mousigian C; Porreca F
    J Med Chem; 1994 Dec; 37(25):4371-83. PubMed ID: 7996549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.