BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 11815392)

  • 21. Acute nicotine enhances c-fos mRNA expression differentially in reward-related substrates of adolescent and adult rat brain.
    Shram MJ; Funk D; Li Z; Lê AD
    Neurosci Lett; 2007 May; 418(3):286-91. PubMed ID: 17420096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nicotine-induced Fos expression in the nucleus accumbens and the medial prefrontal cortex of the rat: role of nicotinic and NMDA receptors in the ventral tegmental area.
    Schilström B; De Villiers S; Malmerfelt A; Svensson TH; Nomikos GG
    Synapse; 2000 Jun; 36(4):314-21. PubMed ID: 10819909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic nicotine exposure attenuates the effects of Δ
    Manwell LA; Miladinovic T; Raaphorst E; Rana S; Malecki S; Mallet PE
    Brain Behav; 2019 Nov; 9(11):e01375. PubMed ID: 31583843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regional differences in naloxone modulation of Delta(9)-THC induced Fos expression in rat brain.
    Allen KV; McGregor IS; Hunt GE; Singh ME; Mallet PE
    Neuropharmacology; 2003 Feb; 44(2):264-74. PubMed ID: 12623225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nicotine pre-exposure does not potentiate the locomotor or rewarding effects of Delta-9-tetrahydrocannabinol in rats.
    Le Foll B; Wiggins M; Goldberg SR
    Behav Pharmacol; 2006 Mar; 17(2):195-9. PubMed ID: 16495727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuroanatomical circuitry mediating the sensory impact of nicotine in the central nervous system.
    Dehkordi O; Rose JE; Asadi S; Manaye KF; Millis RM; Jayam-Trouth A
    J Neurosci Res; 2015 Feb; 93(2):230-43. PubMed ID: 25223294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enriched environment attenuates nicotine self-administration and induces changes in ΔFosB expression in the rat prefrontal cortex and nucleus accumbens.
    Venebra-Muñoz A; Corona-Morales A; Santiago-García J; Melgarejo-Gutiérrez M; Caba M; García-García F
    Neuroreport; 2014 Jun; 25(9):688-92. PubMed ID: 24686135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential behavioral and molecular alterations upon protracted abstinence from cocaine versus morphine, nicotine, THC and alcohol.
    Becker JAJ; Kieffer BL; Le Merrer J
    Addict Biol; 2017 Sep; 22(5):1205-1217. PubMed ID: 27126842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agmatine attenuates nicotine induced conditioned place preference in mice through modulation of neuropeptide Y system.
    Kotagale NR; Walke S; Shelkar GP; Kokare DM; Umekar MJ; Taksande BG
    Behav Brain Res; 2014 Apr; 262():118-24. PubMed ID: 24440829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inducibility of c-Fos protein in visuo-motor system and limbic structures after acute and repeated administration of nicotine in the rat.
    Mathieu-Kia AM; Pages C; Besson MJ
    Synapse; 1998 Aug; 29(4):343-54. PubMed ID: 9661252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of δ-opioid receptors in the behavioral effects of nicotine.
    Berrendero F; Plaza-Zabala A; Galeote L; Flores Á; Bura SA; Kieffer BL; Maldonado R
    Neuropsychopharmacology; 2012 Sep; 37(10):2332-44. PubMed ID: 22669166
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased sensitivity to Δ
    Ponzoni L; Moretti M; Braida D; Zoli M; Clementi F; Viani P; Sala M; Gotti C
    Eur Neuropsychopharmacol; 2019 Apr; 29(4):566-576. PubMed ID: 30773388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissociation of the pharmacological effects of THC by mTOR blockade.
    Puighermanal E; Busquets-Garcia A; Gomis-González M; Marsicano G; Maldonado R; Ozaita A
    Neuropsychopharmacology; 2013 Jun; 38(7):1334-43. PubMed ID: 23358238
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effects of nicotine and cannabinoids on the central nervous system].
    Seutin V
    Rev Med Liege; 2003 Jan; 58(1):19-21. PubMed ID: 12647593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acute injection of drugs with low addictive potential (delta(9)-tetrahydrocannabinol, 3,4-methylenedioxymethamphetamine, lysergic acid diamide) causes a much higher c-fos expression in limbic brain areas than highly addicting drugs (cocaine and morphine).
    Erdtmann-Vourliotis M; Mayer P; Riechert U; Höllt V
    Brain Res Mol Brain Res; 1999 Aug; 71(2):313-24. PubMed ID: 10521585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain.
    Valjent E; Pagès C; Hervé D; Girault JA; Caboche J
    Eur J Neurosci; 2004 Apr; 19(7):1826-36. PubMed ID: 15078556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acute delta9-tetrahydrocannabinol-induced deficits in reversal learning: neural correlates of affective inflexibility.
    Egerton A; Brett RR; Pratt JA
    Neuropsychopharmacology; 2005 Oct; 30(10):1895-905. PubMed ID: 15812570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of the orexin/hypocretin system in the pharmacological effects induced by Δ(9) -tetrahydrocannabinol.
    Flores Á; Julià-Hernández M; Maldonado R; Berrendero F
    Br J Pharmacol; 2016 Apr; 173(8):1381-92. PubMed ID: 26799708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positive reinforcement and c-Fos expression following abuse-like thinner inhalation in mice: Behavioural and immunohistochemical assessment.
    Malloul H; Bennis M; Ba-M'hamed S
    Eur J Neurosci; 2018 Sep; 48(5):2182-2198. PubMed ID: 30070747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The interaction of delta9-tetrahydrocannabinol with cholinomimetic drugs in an agonist-antagonist paradigm.
    Jones BC; Consroe PF; Laird HE
    Eur J Pharmacol; 1976 Aug; 38(2):253-9. PubMed ID: 954840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.