These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 118155)

  • 21. Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: pathways, products, and regulation.
    Thomas TD; Turner KW; Crow VL
    J Bacteriol; 1980 Nov; 144(2):672-82. PubMed ID: 6776093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoinactivation of the Staphylococcus aureus Lactose-Specific EIICB Phosphotransferase Component with p-azidophenyl-β-D-Galactoside and Phosphorylation of the Covalently Bound Substrate.
    Sossna-Wunder G; Hengstenberg W; Briozzo P; Deutscher J
    J Mol Microbiol Biotechnol; 2018; 28(3):147-158. PubMed ID: 30522128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of metabolic energy in the transport of -galactosides by Streptococcus lactis.
    Kashket ER; Wilson TH
    J Bacteriol; 1972 Feb; 109(2):784-9. PubMed ID: 4621686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1204-14. PubMed ID: 6406427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. -D-phosphogalactoside galactohydrolase of lactic streptococci.
    Molskness TA; Lee DR; Sandine WE; Elliker PR
    Appl Microbiol; 1973 Mar; 25(3):373-80. PubMed ID: 4633424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BETA-GALACTOSIDASE OF STREPTOCOCCUS LACTIS.
    CITTI JE; SANDINE WE; ELLIKER PR
    J Bacteriol; 1965 Apr; 89(4):937-42. PubMed ID: 14276118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uptake and metabolism of sucrose by Streptococcus lactis.
    Thompson J; Chassy BM
    J Bacteriol; 1981 Aug; 147(2):543-51. PubMed ID: 6267012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses.
    McKay L; Miller A; Sandine WE; Elliker PR
    J Bacteriol; 1970 Jun; 102(3):804-9. PubMed ID: 5429725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. beta-D-phosphogalactoside galactohydrolase of Streptococcus faecalis and the inhibition of its synthesis by glucose.
    Heller K; Röschenthaler R
    Can J Microbiol; 1978 May; 24(5):512-9. PubMed ID: 418859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of a Streptococcus lactis strain that ferments lactose slowly.
    Crow VL; Thomas TD
    J Bacteriol; 1984 Jan; 157(1):28-34. PubMed ID: 6418719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Presence of galactose in precultures induces lacS and leads to short lag phase in lactose-grown Lactococcus lactis cultures.
    Lorántfy B; Johanson A; Faria-Oliveira F; Franzén CJ; Mapelli V; Olsson L
    J Ind Microbiol Biotechnol; 2019 Jan; 46(1):33-43. PubMed ID: 30413923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterofermentative carbohydrate metabolism of lactose-impaired mutants of Streptococcus lactis.
    Demko GM; Blanton SJ; Benoit RE
    J Bacteriol; 1972 Dec; 112(3):1335-45. PubMed ID: 4629656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli.
    Hickey MW; Hillier AJ; Jago GR
    Appl Environ Microbiol; 1986 Apr; 51(4):825-31. PubMed ID: 16347041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of lactose enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes.
    Reizer J; Saier MH
    J Bacteriol; 1983 Oct; 156(1):236-42. PubMed ID: 6413489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of lactose catabolism in Streptococcus mutans: purification and regulatory properties of phospho-beta-galactosidase.
    Calmes R; Brown AT
    Infect Immun; 1979 Jan; 23(1):68-79. PubMed ID: 33899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose: independence of inducer exclusion and expulsion mechanisms.
    Cook GM; Kearns DB; Russell JB; Reizer J; Saier MH
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2261-9. PubMed ID: 7496538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function?
    Deutscher J; Kessler U; Alpert CA; Hengstenberg W
    Biochemistry; 1984 Sep; 23(19):4455-60. PubMed ID: 21370586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective advantages of various bacterial carbohydrate transport mechanisms.
    Andrews KJ; Lin EC
    Fed Proc; 1976 Aug; 35(10):2185-9. PubMed ID: 820574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio.
    Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M
    J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.