These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11815621)

  • 1. Three-dimensional map of a plant V-ATPase based on electron microscopy.
    Domgall I; Venzke D; Lüttge U; Ratajczak R; Böttcher B
    J Biol Chem; 2002 Apr; 277(15):13115-21. PubMed ID: 11815621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
    Zhao J; Benlekbir S; Rubinstein JL
    Nature; 2015 May; 521(7551):241-5. PubMed ID: 25971514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of the V(1)-ATPase determined by three-dimensional electron microscopy of single particles.
    Radermacher M; Ruiz T; Wieczorek H; Grüber G
    J Struct Biol; 2001 Jul; 135(1):26-37. PubMed ID: 11562163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-microscopic structure of the V-ATPase from mung bean.
    Li Z; Zhang X
    Planta; 2004 Oct; 219(6):948-54. PubMed ID: 15185079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional structure of the vacuolar ATPase proton channel by electron microscopy.
    Wilkens S; Forgac M
    J Biol Chem; 2001 Nov; 276(47):44064-8. PubMed ID: 11533034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of the stator organization in the V-ATPase of Neurospora crassa.
    Venzke D; Domgall I; Köcher T; Féthière J; Fischer S; Böttcher B
    J Mol Biol; 2005 Jun; 349(3):659-69. PubMed ID: 15890365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The emerging structure of vacuolar ATPases.
    Drory O; Nelson N
    Physiology (Bethesda); 2006 Oct; 21():317-25. PubMed ID: 16990452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional structure of the intact Thermus thermophilus H+-ATPase/synthase by electron microscopy.
    Bernal RA; Stock D
    Structure; 2004 Oct; 12(10):1789-98. PubMed ID: 15458628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional reconstruction of bovine brain V-ATPase by cryo-electron microscopy and single particle analysis.
    Gregorini M; Wang J; Xie XS; Milligan RA; Engel A
    J Struct Biol; 2007 Jun; 158(3):445-54. PubMed ID: 17349803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subunit composition, structure, and distribution of bacterial V-type ATPases.
    Lolkema JS; Chaban Y; Boekema EJ
    J Bioenerg Biomembr; 2003 Aug; 35(4):323-35. PubMed ID: 14635778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton translocation driven by ATP hydrolysis in V-ATPases.
    Kawasaki-Nishi S; Nishi T; Forgac M
    FEBS Lett; 2003 Jun; 545(1):76-85. PubMed ID: 12788495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cellular energization state affects peripheral stalk stability of plant vacuolar H+-ATPase and impairs vacuolar acidification.
    Schnitzer D; Seidel T; Sander T; Golldack D; Dietz KJ
    Plant Cell Physiol; 2011 May; 52(5):946-56. PubMed ID: 21474463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A structural model of the vacuolar ATPase from transmission electron microscopy.
    Wilkens S; Zhang Z; Zheng Y
    Micron; 2005; 36(2):109-26. PubMed ID: 15629643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity.
    Muench SP; Huss M; Song CF; Phillips C; Wieczorek H; Trinick J; Harrison MA
    J Mol Biol; 2009 Mar; 386(4):989-99. PubMed ID: 19244615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional structure of the vacuolar ATPase. Localization of subunit H by difference imaging and chemical cross-linking.
    Wilkens S; Inoue T; Forgac M
    J Biol Chem; 2004 Oct; 279(40):41942-9. PubMed ID: 15269204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP analogue binding to the A subunit induces conformational changes in the E subunit that involves a disulfide bond formation in plant V-ATPase.
    Kawamura Y; Arakawa K; Maeshima M; Yoshida S
    Eur J Biochem; 2001 May; 268(10):2801-9. PubMed ID: 11358495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential immunological cross-reactions with antisera against the V-ATPase of Kalanchoë daigremontiana reveal structural differences of V-ATPase subunits of different plant species.
    Fischer-Schliebs E; Ball E; Berndt E; Besemfelder-Butz E; Binzel ML; Drobny M; Mühlenhoff D; Müller ML; Rakowski K; Ratajczak R
    Biol Chem; 1997 Oct; 378(10):1131-9. PubMed ID: 9372182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the vacuolar ATPase by electron microscopy.
    Wilkens S; Vasilyeva E; Forgac M
    J Biol Chem; 1999 Nov; 274(45):31804-10. PubMed ID: 10542203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building the stator of the yeast vacuolar-ATPase: specific interaction between subunits E and G.
    Féthière J; Venzke D; Diepholz M; Seybert A; Geerlof A; Gentzel M; Wilm M; Böttcher B
    J Biol Chem; 2004 Sep; 279(39):40670-6. PubMed ID: 15292229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition of the central stalk of the Na+-pumping V-ATPase from Caloramator fervidus.
    Chaban Y; Ubbink-Kok T; Keegstra W; Lolkema JS; Boekema EJ
    EMBO Rep; 2002 Oct; 3(10):982-7. PubMed ID: 12231509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.