These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11815815)

  • 41. Toxicity of chlorpyrifos to the early life history stages of eastern rainbowfish Melanotaenia splendida splendida (Peters 1866) in tropical Australia.
    Humphrey C; Klumpp DW
    Environ Toxicol; 2003 Dec; 18(6):418-27. PubMed ID: 14608612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of pesticide residues and gene expression in common carp exposed to atrazine and chlorpyrifos: Health risk assessments.
    Xing H; Wang Z; Wu H; Zhao X; Liu T; Li S; Xu S
    Ecotoxicol Environ Saf; 2015 Mar; 113():491-8. PubMed ID: 25568939
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Normalizing the Biomagnification Factor.
    Gobas FAPC; Lee YS; Arnot JA
    Environ Toxicol Chem; 2021 Apr; 40(4):1204-1211. PubMed ID: 33289926
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioaccumulation and trophic transfer of mercury and selenium in african sub-tropical fluvial reservoirs food webs (Burkina Faso).
    Ouédraogo O; Chételat J; Amyot M
    PLoS One; 2015; 10(4):e0123048. PubMed ID: 25875292
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain.
    Rahman MA; Hasegawa H; Lim RP
    Environ Res; 2012 Jul; 116():118-35. PubMed ID: 22534144
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Acute and subchronic toxic effects of atrazine and chlorpyrifos on common carp (Cyprinus carpio L.): Immunotoxicity assessments.
    Xing H; Liu T; Zhang Z; Wang X; Xu S
    Fish Shellfish Immunol; 2015 Aug; 45(2):327-33. PubMed ID: 25917970
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trophodynamic behavior of 4-nonylphenol and nonylphenol polyethoxylate in a marine aquatic food web from Bohai Bay, north China: comparison to DDTs.
    Hu J; Jin F; Wan Y; Yang M; An L; An W; Tao S
    Environ Sci Technol; 2005 Jul; 39(13):4801-7. PubMed ID: 16053077
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complex role of titanium dioxide nanoparticles in the trophic transfer of arsenic from Nannochloropsis maritima to Artemia salina nauplii.
    Yang F; Zeng L; Luo Z; Wang Z; Huang F; Wang Q; Drobne D; Yan C
    Aquat Toxicol; 2018 May; 198():231-239. PubMed ID: 29558708
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distribution of organic and inorganic mercury in the tissues and organs of fish from the southern Baltic Sea.
    Polak-Juszczak L
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34181-34189. PubMed ID: 30288672
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms.
    Katagi T
    Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An evaluation of bioaccumulation data for hexachlorobenzene to derive water quality standards according to the EU-WFD methodology.
    Moermond CT; Verbruggen EM
    Integr Environ Assess Manag; 2013 Jan; 9(1):87-97. PubMed ID: 22791265
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in dietary bioaccumulation of tributyltin chloride (TBTCl) in red sea bream (Pagrus major) with the concentration in feed.
    Ikeda K; Yamada H
    Water Res; 2003 Apr; 37(7):1497-504. PubMed ID: 12600377
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toxic impact of two organophosphate insecticides on biochemical parameters of a food fish and assessment of recovery response.
    Narra MR; Begum G; Rajender K; Rao JV
    Toxicol Ind Health; 2012 May; 28(4):343-52. PubMed ID: 21983276
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increasing levels and biomagnification of persistent organic pollutants (POPs) in Antarctic biota.
    Goerke H; Weber K; Bornemann H; Ramdohr S; Plötz J
    Mar Pollut Bull; 2004 Feb; 48(3-4):295-302. PubMed ID: 14972581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food.
    Fanta E; Rios FS; Romão S; Vianna AC; Freiberger S
    Ecotoxicol Environ Saf; 2003 Feb; 54(2):119-30. PubMed ID: 12550089
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Do pyrethroid-resistant Hyalella azteca have greater bioaccumulation potential compared to non-resistant populations? Implications for bioaccumulation in fish.
    Muggelberg LL; Huff Hartz KE; Nutile SA; Harwood AD; Heim JR; Derby AP; Weston DP; Lydy MJ
    Environ Pollut; 2017 Jan; 220(Pt A):375-382. PubMed ID: 27756597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monitoring of pesticide chlorpyrifos residue in farmed fish: investigation of possible sources.
    Sun F; Chen HS
    Chemosphere; 2008 May; 71(10):1866-9. PubMed ID: 18313724
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dichlorodiphenyltrichloroethane in the aquatic ecosystem of the Okavango Delta, Botswana, South Africa.
    Mbongwe B; Legrand M; Blais JM; Kimpe LE; Ridal JJ; Lean DR
    Environ Toxicol Chem; 2003 Jan; 22(1):7-19. PubMed ID: 12503741
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prey-specific determination of arsenic bioaccumulation and transformation in a marine benthic fish.
    Zhang W; Zhang L; Wang WX
    Sci Total Environ; 2017 May; 586():296-303. PubMed ID: 28185737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of tissue-specific accumulation and effects of cadmium in a marine fish fed contaminated commercially produced diet.
    Dang F; Wang WX
    Aquat Toxicol; 2009 Nov; 95(3):248-55. PubMed ID: 19850362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.