BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11815852)

  • 1. Molecular characteristics of glnA linked mutations in the nitrogen-fixing cyanobacterium Nostoc muscorum.
    Srivastava R; Amla DV
    Curr Microbiol; 2002 Feb; 44(2):94-101. PubMed ID: 11815852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamine synthetase from N2-fixing cyanobacterium Nostoc muscorum--purification, biochemical and immunological characteristics.
    Srivastava R; Amla DV
    Indian J Exp Biol; 1997 Oct; 35(10):1098-107. PubMed ID: 9475046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic transformation of glutamine auxotrophy to prototrophy in the cyanobacterium Nostoc muscorum.
    Verma SK; Singh AK; Katiyar S; Singh HN
    Arch Microbiol; 1990; 154(4):414-6. PubMed ID: 1978772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of a new type of glutamine synthetase from cyanobacteria.
    García-Domínguez M; Reyes JC; Florencio FJ
    Eur J Biochem; 1997 Feb; 244(1):258-64. PubMed ID: 9063472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered kinetic properties of tyrosine-183 to cysteine mutation in glutamine synthetase of anabaena variabilis strain SA1 is responsible for excretion of ammonium ion produced by nitrogenase.
    Healy FG; Latorre C; Albrecht SL; Reddy PM; Shanmugam KT
    Curr Microbiol; 2003 Jun; 46(6):423-31. PubMed ID: 12732949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The glnA gene of the cyanobacterium Agmenellum quadruplicatum PR-6 is nonessential for ammonium assimilation.
    Wagner SJ; Thomas SP; Kaufman RI; Nixon BT; Stevens SE
    J Bacteriol; 1993 Feb; 175(3):604-12. PubMed ID: 7678591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A common transport system for methionine, L-methionine-DL-sulfoximine (MSX), and phosphinothricin (PPT) in the diazotrophic cyanobacterium Nostoc muscorum.
    Singh AK; Syiem MB; Singh RS; Adhikari S; Rai AN
    Curr Microbiol; 2008 May; 56(5):436-41. PubMed ID: 18266032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mutant lacking the glutamine synthetase gene (glnA) is impaired in the regulation of the nitrate assimilation system in the cyanobacterium Synechocystis sp. strain PCC 6803.
    Reyes JC; Florencio FJ
    J Bacteriol; 1994 Dec; 176(24):7516-23. PubMed ID: 8002575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Anabaena sp. strain PCC 7120 glutamine synthetase activity in a Synechocystis sp. strain PCC 6803 derivative strain bearing the Anabaena glnA gene and a mutated host glnA gene.
    Mérida A; Flores E; Florencio FJ
    J Bacteriol; 1992 Jan; 174(2):650-4. PubMed ID: 1345914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription of glutamine synthetase genes (glnA and glnN) from the cyanobacterium Synechocystis sp. strain PCC 6803 is differently regulated in response to nitrogen availability.
    Reyes JC; Muro-Pastor MI; Florencio FJ
    J Bacteriol; 1997 Apr; 179(8):2678-89. PubMed ID: 9098067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new type of glutamine synthetase in cyanobacteria: the protein encoded by the glnN gene supports nitrogen assimilation in Synechocystis sp. strain PCC 6803.
    Reyes JC; Florencio FJ
    J Bacteriol; 1994 Mar; 176(5):1260-7. PubMed ID: 7906687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen control of the glnN gene that codes for GS type III, the only glutamine synthetase in the cyanobacterium Pseudanabaena sp. PCC 6903.
    Crespo JL; García-Domínguez M; Florencio FJ
    Mol Microbiol; 1998 Dec; 30(5):1101-12. PubMed ID: 9988484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of glutamine synthetase activity and synthesis in free-living and symbiotic Anabaena spp.
    Orr J; Haselkorn R
    J Bacteriol; 1982 Nov; 152(2):626-35. PubMed ID: 6127334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and cloning of the glnR locus, which is required for transcription of the glnA gene in Streptomyces coelicolor A3(2).
    Wray LV; Atkinson MR; Fisher SH
    J Bacteriol; 1991 Nov; 173(22):7351-60. PubMed ID: 1718946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a novel glutamine synthetase from Rhizobium meliloti.
    Shatters RG; Liu Y; Kahn ML
    J Biol Chem; 1993 Jan; 268(1):469-75. PubMed ID: 8093245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and purification of glutamine synthetase cloned from Bacteroides fragilis.
    Southern JA; Parker JR; Woods DR
    J Gen Microbiol; 1986 Oct; 132(10):2827-35. PubMed ID: 2887626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All four Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but only GlnA1 is abundantly expressed and essential for bacterial homeostasis.
    Harth G; Maslesa-Galić S; Tullius MV; Horwitz MA
    Mol Microbiol; 2005 Nov; 58(4):1157-72. PubMed ID: 16262797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a role of glutamine synthetase in assimilation of amino acids as nitrogen source in the cyanobacterium Nostoc muscorum.
    Singh AK; Singh HN; Rai AN
    Biochem Int; 1991 Dec; 25(5):887-94. PubMed ID: 1687107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of glutamate dehydrogenase activity and ammonia production in a nitrogen fixing cyanobacterium.
    Trehan K
    Acta Microbiol Hung; 1986; 33(2):111-6. PubMed ID: 2880448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of glutamine synthetase in nitrogen metabolite repression in Aspergillus nidulans.
    Margelis S; D'Souza C; Small AJ; Hynes MJ; Adams TH; Davis MA
    J Bacteriol; 2001 Oct; 183(20):5826-33. PubMed ID: 11566979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.