These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11816589)

  • 1. Analysis of heterogeneous fluorescence decays. Distribution of pyrene derivatives in an octadecylsilane layer in capillary electrochromatography.
    He Y; Geng L
    Anal Chem; 2001 Nov; 73(22):5564-75. PubMed ID: 11816589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ time-resolved fluorescence spectroscopy in the frequency domain in capillary electrochromatography.
    He Y; Geng L
    Anal Chem; 2002 Apr; 74(8):1819-23. PubMed ID: 11985313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maximum entropy method for frequency-domain fluorescence lifetime analysis. 2. Timing, mismatched intensity, and reference lifetime errors.
    Shaver JM; McGown LB
    Anal Chem; 1996 Feb; 68(4):611-20. PubMed ID: 8999738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of heterogeneous fluorescence decays in proteins. Using fluorescence lifetime of 8-anilino-1-naphthalenesulfonate to probe apomyoglobin unfolding at equilibrium.
    Wang G; Gao Y; Geng ML
    Biochim Biophys Acta; 2006 Jul; 1760(7):1125-37. PubMed ID: 16730413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved maximum entropy method for the analysis of fluorescence spectroscopy data: evaluating zero-time shift and assessing its effect on the determination of fluorescence lifetimes.
    Esposito R; Mensitieri G; de Nicola S
    Analyst; 2015 Dec; 140(24):8138-47. PubMed ID: 26541293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging solute distribution in capillary electrochromatography with laser scanning confocal microscopy.
    Lowry M; He Y; Geng L
    Anal Chem; 2002 Apr; 74(8):1811-8. PubMed ID: 11985312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maximum entropy analysis of analytically simulated complex fluorescence decays.
    Vecer J; Herman P
    J Fluoresc; 2011 May; 21(3):873-81. PubMed ID: 20066479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resolvability of fluorescence lifetime distributions using phase fluorometry.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Apr; 51(4):587-96. PubMed ID: 3580485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of simulated fluorescence intensities decays by a new maximum entropy method algorithm.
    Esposito R; Altucci C; Velotta R
    J Fluoresc; 2013 Jan; 23(1):203-11. PubMed ID: 23080525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximum entropy method for frequency domain fluorescence lifetime analysis. 1. Effects of frequency range and random noise.
    Shaver JM; McGown LB
    Anal Chem; 1996 Jan; 68(1):9-17. PubMed ID: 21619219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of lifetime distributions from fluorescence decays with application to DNA-base analogues.
    Fogarty AC; Jones AC; Camp PJ
    Phys Chem Chem Phys; 2011 Mar; 13(9):3819-30. PubMed ID: 21212896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for the analysis of complex fluorescence decays: sum of Becquerel functions versus sum of exponentials.
    Menezes F; Fedorov A; Baleizão C; Valeur B; Berberan-Santos MN
    Methods Appl Fluoresc; 2013 Jan; 1(1):015002. PubMed ID: 29148435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: application to protein folding.
    Steinbach PJ; Ionescu R; Matthews CR
    Biophys J; 2002 Apr; 82(4):2244-55. PubMed ID: 11916879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of fluorescence decays in proteins using continuous lifetime distributions.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Jun; 51(6):925-36. PubMed ID: 3607213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a reference convolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics.
    Vos K; van Hoek A; Visser AJ
    Eur J Biochem; 1987 May; 165(1):55-63. PubMed ID: 3569297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavin dynamics in oxidized Clostridium beijerinckii flavodoxin as assessed by time-resolved polarized fluorescence.
    Leenders R; Van Hoek A; Van Iersel M; Veeger C; Visser AJ
    Eur J Biochem; 1993 Dec; 218(3):977-84. PubMed ID: 8281949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.
    Schlyer BD; Schauerte JA; Steel DG; Gafni A
    Biophys J; 1994 Sep; 67(3):1192-202. PubMed ID: 7811933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new approach to interpretation of heterogeneity of fluorescence decay: effect of induced tautomeric shift and enzyme-->ligand fluorescence resonance energy transfer.
    Wlodarczyk J; Kierdaszuk B
    Biophys Chem; 2006 Sep; 123(2-3):146-53. PubMed ID: 16765509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximum entropy analysis of polarized fluorescence decay of (E)GFP in aqueous solution.
    Novikov EG; Skakun VV; Borst JW; Visser AJWG
    Methods Appl Fluoresc; 2017 Dec; 6(1):014001. PubMed ID: 28858857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributions of fluorescence decay times for parinaric acids in phospholipid membranes.
    James DR; Turnbull JR; Wagner BD; Ware WR; Petersen NO
    Biochemistry; 1987 Sep; 26(19):6272-7. PubMed ID: 3689775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.