These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11816766)

  • 61. Control of membrane fouling in membrane bioreactor process by coagulant addition.
    Mishima I; Nakajima J
    Water Sci Technol; 2009; 59(7):1255-62. PubMed ID: 19380989
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sludge treatment by ozonation--evaluation of full-scale results.
    Sievers M; Ried A; Koll R
    Water Sci Technol; 2004; 49(4):247-53. PubMed ID: 15077979
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Accumulation of biopolymer clusters in a submerged membrane bioreactor and its effect on membrane fouling.
    Wang XM; Li XY
    Water Res; 2008 Feb; 42(4-5):855-62. PubMed ID: 17889249
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Peak flux performance and microbial removal by selected membrane bioreactor systems.
    Hirani ZM; DeCarolis JF; Adham SS; Jacangelo JG
    Water Res; 2010 Apr; 44(8):2431-40. PubMed ID: 20144839
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Poly(N-isopropylacrylamide)-graft-polypropylene membranes containing adsorbed antibody for cell separation.
    Okamura A; Itayagoshi M; Hagiwara T; Yamaguchi M; Kanamori T; Shinbo T; Wang PC
    Biomaterials; 2005 Apr; 26(11):1287-92. PubMed ID: 15475058
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Membrane bioreactor for the drinking water treatment of polluted surface water supplies.
    Li XY; Chu HP
    Water Res; 2003 Nov; 37(19):4781-91. PubMed ID: 14568065
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Factors affecting filtration characteristics in membrane-coupled moving bed biofilm reactor.
    Lee WN; Kang IJ; Lee CH
    Water Res; 2006 May; 40(9):1827-35. PubMed ID: 16631228
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Membrane bioreactors as core technology for water loop closure in a maltery.
    De Wever H; Boënne W; Danau M; Vanderspiegel N; Lambert K; Hardy K; Limbos J
    Water Sci Technol; 2008; 57(11):1805-8. PubMed ID: 18547934
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Package plant of extended aeration membrane bioreactors: a study on aeration intensity and biofouling control.
    Ujang Z; Ng SS; Nagaoka H
    Water Sci Technol; 2005; 51(10):335-42. PubMed ID: 16104438
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High flux and antifouling filtration membrane based on non-woven fabric with chitosan coating for membrane bioreactors.
    Wang C; Yang F; Meng F; Zhang H; Xue Y; Fu G
    Bioresour Technol; 2010 Jul; 101(14):5469-74. PubMed ID: 20202832
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sustainable membrane operation design for the treatment of the synthetic coke wastewater in SMBR.
    Zhou Y; Xu ZL; Munib S; Chen GE; Lu Q
    Water Sci Technol; 2009; 60(8):2115-24. PubMed ID: 19844058
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism.
    Jiang T; Kennedy MD; Guinzbourg BF; Vanrolleghem PA; Schippers JC
    Water Sci Technol; 2005; 51(6-7):19-25. PubMed ID: 16003957
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Anaerobic treatment of brewery wastewater with an internal membrane bioreactor.
    Cornelissen ER; van Buggenhout S; van Ermen S; De Smedt M; Van Impe J; Koning J
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):135-8. PubMed ID: 15954573
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The efficacy of ozone as a pre- and post-treatment option for UASB-treated food processing wastewaters.
    Sigge GO; Britz TJ; Fourie PC; Barnardt CA
    Water Sci Technol; 2005; 52(1-2):167-73. PubMed ID: 16180424
    [TBL] [Abstract][Full Text] [Related]  

  • 75. An integrated wastewater reuse concept combining natural reclamation techniques, membrane filtration and metal oxide adsorption.
    Sperlich A; Zheng X; Ernst M; Jekel M
    Water Sci Technol; 2008; 57(6):909-14. PubMed ID: 18413952
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Application of membrane bioreactor system with full scale plant on livestock wastewater.
    Kim H; Kim HS; Yeom IT; Chae YB
    Water Sci Technol; 2005; 51(6-7):465-71. PubMed ID: 16004009
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Membrane bioreactors for final treatment of wastewater.
    Galil NI; Sheindorf Ch; Stahl N; Tenenbaum A; Levinsky Y
    Water Sci Technol; 2003; 48(8):103-10. PubMed ID: 14682576
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Proposing a method for online permeability monitoring in membrane bioreactors.
    Joss A; Böhler M; Wedi D; Siegrist H
    Water Sci Technol; 2009; 60(2):497-506. PubMed ID: 19633393
    [TBL] [Abstract][Full Text] [Related]  

  • 79. New insight into the fouling behavior of hydrophobic and hydrophilic polypropylene membranes in integrated membrane bioreactors.
    Guo YF; Sun PC; Wei JF
    Environ Technol; 2018 Dec; 39(24):3159-3168. PubMed ID: 28868976
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.