These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 11816812)
1. Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Hahn-Hägerdal B; Wahlbom CF; Gárdonyi M; van Zyl WH; Cordero Otero RR; Jönsson LJ Adv Biochem Eng Biotechnol; 2001; 73():53-84. PubMed ID: 11816812 [TBL] [Abstract][Full Text] [Related]
2. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Kim SR; Park YC; Jin YS; Seo JH Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005 [TBL] [Abstract][Full Text] [Related]
3. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. Hou J; Qiu C; Shen Y; Li H; Bao X FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582494 [TBL] [Abstract][Full Text] [Related]
4. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613 [TBL] [Abstract][Full Text] [Related]
5. Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitis. Shin M; Kim JW; Ye S; Kim S; Jeong D; Lee DY; Kim JN; Jin YS; Kim KH; Kim SR Appl Microbiol Biotechnol; 2019 Jul; 103(13):5435-5446. PubMed ID: 31001747 [TBL] [Abstract][Full Text] [Related]
6. The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw. Fonseca C; Olofsson K; Ferreira C; Runquist D; Fonseca LL; Hahn-Hägerdal B; Lidén G Enzyme Microb Technol; 2011 May; 48(6-7):518-25. PubMed ID: 22113025 [TBL] [Abstract][Full Text] [Related]
7. Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Hahn-Hägerdal B; Lindén T; Senac T; Skoog K Appl Biochem Biotechnol; 1991; 28-29():131-44. PubMed ID: 1929360 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome changes in adaptive evolution of xylose-fermenting industrial Saccharomyces cerevisiae strains with δ-integration of different xylA genes. Li YC; Zeng WY; Gou M; Sun ZY; Xia ZY; Tang YQ Appl Microbiol Biotechnol; 2017 Oct; 101(20):7741-7753. PubMed ID: 28900684 [TBL] [Abstract][Full Text] [Related]
9. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. Johansson B; Hahn-Hägerdal B FEMS Yeast Res; 2002 Aug; 2(3):277-82. PubMed ID: 12702276 [TBL] [Abstract][Full Text] [Related]
10. [Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae]. Wang C; Li H; Xu L; Shen Y; Hou J; Bao X Sheng Wu Gong Cheng Xue Bao; 2018 Oct; 34(10):1543-1555. PubMed ID: 30394022 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Hahn-Hägerdal B; Karhumaa K; Jeppsson M; Gorwa-Grauslund MF Adv Biochem Eng Biotechnol; 2007; 108():147-77. PubMed ID: 17846723 [TBL] [Abstract][Full Text] [Related]
12. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Almeida JR; Runquist D; Sànchez i Nogué V; Lidén G; Gorwa-Grauslund MF Biotechnol J; 2011 Mar; 6(3):286-99. PubMed ID: 21305697 [TBL] [Abstract][Full Text] [Related]
13. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Matsushika A; Inoue H; Murakami K; Takimura O; Sawayama S Bioresour Technol; 2009 Apr; 100(8):2392-8. PubMed ID: 19128960 [TBL] [Abstract][Full Text] [Related]
14. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Matsushika A; Sawayama S Enzyme Microb Technol; 2011 May; 48(6-7):466-71. PubMed ID: 22113018 [TBL] [Abstract][Full Text] [Related]
15. Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts. Kumari R; Pramanik K Appl Biochem Biotechnol; 2012 Jun; 167(4):873-84. PubMed ID: 22639357 [TBL] [Abstract][Full Text] [Related]
17. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. van Maris AJ; Abbott DA; Bellissimi E; van den Brink J; Kuyper M; Luttik MA; Wisselink HW; Scheffers WA; van Dijken JP; Pronk JT Antonie Van Leeuwenhoek; 2006 Nov; 90(4):391-418. PubMed ID: 17033882 [TBL] [Abstract][Full Text] [Related]
18. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492 [TBL] [Abstract][Full Text] [Related]
19. [Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae]. Shen Y; Wang Y; Bao XM; Qu YB Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):636-40. PubMed ID: 15969099 [TBL] [Abstract][Full Text] [Related]
20. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]