These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11817360)

  • 1. Biological responses to the reversal of acidification in surface waters of the English Lake District.
    Tipping B; Bass JA; Hardie D; Haworth EY; Hurley MA; Wills G
    Environ Pollut; 2002; 116(1):137-46. PubMed ID: 11817360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited acid deposition inferred from diatoms during the 20th century - A case study from lakes in the Tatra Mountains.
    Sienkiewicz E; Gąsiorowski M
    J Environ Sci (China); 2018 Feb; 64():92-106. PubMed ID: 29478665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological responses to the chemical recovery of acidified fresh waters in the UK.
    Monteith DT; Hildrew AG; Flower RJ; Raven PJ; Beaumont WR; Collen P; Kreiser AM; Shilland EM; Winterbottom JH
    Environ Pollut; 2005 Sep; 137(1):83-101. PubMed ID: 15944042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversal of acidification in tributaries of the River Duddon (English Lake District) between 1970 and 1998.
    Tipping E; Bettney R; Hurley MA; Isgren F; James JB; Lawlor AJ; Lofts S; Rigg E; Simon BM; Smith EJ; Woof C
    Environ Pollut; 2000 Aug; 109(2):183-91. PubMed ID: 15092889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recolonization of acid-damaged lakes by the benthic invertebrates Stenacron interpunctatum, Stenonema femoratum and Hyalella azteca.
    Snucins E
    Ambio; 2003 Apr; 32(3):225-9. PubMed ID: 12839200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing diatom-based inference models to assess lake ecosystem change along a gradient of metal smelting impacts: Sudbury lakes revisited.
    Cheng Y; Michelutti N; Paterson AM; Meyer-Jacob C; Smol JP
    J Phycol; 2022 Aug; 58(4):530-542. PubMed ID: 35578796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of a mining lake - From acidity to natural neutralization.
    Sienkiewicz E; Gąsiorowski M
    Sci Total Environ; 2016 Jul; 557-558():343-54. PubMed ID: 27016682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The United Kingdom Acid Waters Monitoring Network: a review of the first 15 years and introduction to the special issue.
    Monteith DT; Evans CD
    Environ Pollut; 2005 Sep; 137(1):3-13. PubMed ID: 15944036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Littoral microcrustacean (Cladocera and Copepoda) indicators of acidification in Canadian Shield lakes.
    Walseng B; Yan ND; Schartau AK
    Ambio; 2003 Apr; 32(3):208-13. PubMed ID: 12839197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does road salting confound the recovery of the microcrustacean community in an acidified lake?
    Jensen TC; Meland S; Schartau AK; Walseng B
    Sci Total Environ; 2014 Apr; 478():36-47. PubMed ID: 24530583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resilience of epilithic algal assemblages in atmospherically and experimentally acidified boreal lakes.
    Vinebrooke RD; Graham MD; Findlay DL; Turner MA
    Ambio; 2003 Apr; 32(3):196-202. PubMed ID: 12839195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America.
    Warren DR; Kraft CE; Josephson DC; Driscoll CT
    Glob Chang Biol; 2017 Jun; 23(6):2149-2153. PubMed ID: 27976837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term studies (1871-2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe).
    Vrba J; Kopácek J; Fott J; Kohout L; Nedbalová L; Prazáková M; Soldán T; Schaumburg J
    Sci Total Environ; 2003 Jul; 310(1-3):73-85. PubMed ID: 12812732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Relationship Between Macrophyte Communities and Macroinvertebrate Communities in an Urban Stream].
    Qu XD; Yu Y; Zhang M; Duan LF; Peng WQ
    Huan Jing Ke Xue; 2018 Feb; 39(2):783-791. PubMed ID: 29964842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid rain, storm period chemistry and their potential impact on stream communities in Hong Kong.
    Peart MR
    Chemosphere; 2000 Jul; 41(1-2):25-31. PubMed ID: 10819176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery from acidification of Finnish lakes: regional patterns and relations to emission reduction policy.
    Forsius M; Vuorenmaa J; Mannio J; Syri S
    Sci Total Environ; 2003 Jul; 310(1-3):121-32. PubMed ID: 12812736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Spatial and temporal variation patterns in aquatic macroinvertebrates of Tecocomulco Lake, Hidalgo (México)].
    Rico-Sánchez AE; Rodríguez-Romero AJ; López-López E; Sedeño-Díaz JE
    Rev Biol Trop; 2014 Apr; 62 Suppl 2():81-96. PubMed ID: 25189071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a macroinvertebrate-based biomonitoring tool to assess fine sediment impact in small mountain streams.
    Gieswein A; Hering D; Lorenz AW
    Sci Total Environ; 2019 Feb; 652():1290-1301. PubMed ID: 30586815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Current status of surface water acidification in Northeast China].
    Xu GY; Kang RH; Luo Y; Duan L
    Huan Jing Ke Xue; 2013 May; 34(5):1695-9. PubMed ID: 23914517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing long-term pH change in an Australian river catchment using monitoring and palaeolimnological data.
    Tibby J; Reid MA; Fluin J; Hart BT; Kershaw AP
    Environ Sci Technol; 2003 Aug; 37(15):3250-5. PubMed ID: 12966966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.