These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11818060)

  • 41. Posttranslational modifications of the KI-67 protein coincide with two major checkpoints during mitosis.
    Endl E; Gerdes J
    J Cell Physiol; 2000 Mar; 182(3):371-80. PubMed ID: 10653604
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An M-phase-specific protein kinase of Xenopus oocytes: partial purification and possible mechanism of its periodic activation.
    Labbé JC; Picard A; Karsenti E; Dorée M
    Dev Biol; 1988 May; 127(1):157-69. PubMed ID: 2834245
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions.
    Krasinska L; Domingo-Sananes MR; Kapuy O; Parisis N; Harker B; Moorhead G; Rossignol M; Novák B; Fisher D
    Mol Cell; 2011 Nov; 44(3):437-50. PubMed ID: 22055189
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Involvement of p21 in the PKC-induced regulation of the G2/M cell cycle transition.
    Barboule N; Lafon C; Chadebech P; Vidal S; Valette A
    FEBS Lett; 1999 Feb; 444(1):32-7. PubMed ID: 10037143
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro effects on microtubule dynamics of purified Xenopus M phase-activated MAP kinase.
    Gotoh Y; Nishida E; Matsuda S; Shiina N; Kosako H; Shiokawa K; Akiyama T; Ohta K; Sakai H
    Nature; 1991 Jan; 349(6306):251-4. PubMed ID: 1702878
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Maitotoxin, a calcium channel activator, inhibits cell cycle progression through the G1/S and G2/M transitions and prevents CDC2 kinase activation in GH4C1 cells.
    Van Dolah FM; Ramsdell JS
    J Cell Physiol; 1996 Jan; 166(1):49-56. PubMed ID: 8557775
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coordinated regulation of M phase exit and S phase entry by the Cdc2 activity level in the early embryonic cell cycle.
    Iwabuchi M; Ohsumi K; Yamamoto TM; Kishimoto T
    Dev Biol; 2002 Mar; 243(1):34-43. PubMed ID: 11846475
    [TBL] [Abstract][Full Text] [Related]  

  • 48. cdc25 is one of the MPM-2 antigens involved in the activation of maturation-promoting factor.
    Kuang J; Ashorn CL; Gonzalez-Kuyvenhoven M; Penkala JE
    Mol Biol Cell; 1994 Feb; 5(2):135-45. PubMed ID: 8019000
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MAPK inactivation is required for the G2 to M-phase transition of the first mitotic cell cycle.
    Abrieu A; Fisher D; Simon MN; Dorée M; Picard A
    EMBO J; 1997 Nov; 16(21):6407-13. PubMed ID: 9351823
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phospho-regulation of the Cdc14/Clp1 phosphatase delays late mitotic events in S. pombe.
    Wolfe BA; McDonald WH; Yates JR; Gould KL
    Dev Cell; 2006 Sep; 11(3):423-30. PubMed ID: 16950131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PD 98059 prevents establishment of the spindle assembly checkpoint and inhibits the G2-M transition in meiotic but not mitotic cell cycles in Xenopus.
    Cross DA; Smythe C
    Exp Cell Res; 1998 May; 241(1):12-22. PubMed ID: 9633509
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1.
    Neef R; Gruneberg U; Kopajtich R; Li X; Nigg EA; Sillje H; Barr FA
    Nat Cell Biol; 2007 Apr; 9(4):436-44. PubMed ID: 17351640
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence that the G1-S and G2-M transitions are controlled by different cdc2 proteins in higher eukaryotes.
    Fang F; Newport JW
    Cell; 1991 Aug; 66(4):731-42. PubMed ID: 1652371
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of APC activity by phosphorylation and regulatory factors.
    Kotani S; Tanaka H; Yasuda H; Todokoro K
    J Cell Biol; 1999 Aug; 146(4):791-800. PubMed ID: 10459014
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential mitotic phosphorylation of proteins of the nuclear pore complex.
    Macaulay C; Meier E; Forbes DJ
    J Biol Chem; 1995 Jan; 270(1):254-62. PubMed ID: 7814383
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Globally optimised parameters for a model of mitotic control in frog egg extracts.
    Zwolak JW; Tyson JJ; Watson LT
    Syst Biol (Stevenage); 2005 Jun; 152(2):81-92. PubMed ID: 17044236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DEPDC1B coordinates de-adhesion events and cell-cycle progression at mitosis.
    Marchesi S; Montani F; Deflorian G; D'Antuono R; Cuomo A; Bologna S; Mazzoccoli C; Bonaldi T; Di Fiore PP; Nicassio F
    Dev Cell; 2014 Nov; 31(4):420-33. PubMed ID: 25458010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of cycle progression in plant cells.
    de la Torre C; Gimenez-Martin G
    Cell Biol Int Rep; 1977 May; 1(3):211-23. PubMed ID: 608179
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Revisiting the multisite phosphorylation that produces the M-phase supershift of key mitotic regulators.
    Tan T; Wu C; Liu B; Pan BF; Hawke DH; Su Z; Liu S; Zhang W; Wang R; Lin SH; Kuang J
    Mol Biol Cell; 2022 Oct; 33(12):ar115. PubMed ID: 35976701
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatial and Temporal Scaling of Microtubules and Mitotic Spindles.
    Lacroix B; Dumont J
    Cells; 2022 Jan; 11(2):. PubMed ID: 35053364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.