These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11818067)

  • 1. Redox potential: differential roles in dCRY and mCRY1 functions.
    Froy O; Chang DC; Reppert SM
    Curr Biol; 2002 Jan; 12(2):147-52. PubMed ID: 11818067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop.
    Kume K; Zylka MJ; Sriram S; Shearman LP; Weaver DR; Jin X; Maywood ES; Hastings MH; Reppert SM
    Cell; 1999 Jul; 98(2):193-205. PubMed ID: 10428031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore.
    Ozturk N; Selby CP; Zhong D; Sancar A
    J Biol Chem; 2014 Feb; 289(8):4634-42. PubMed ID: 24379403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleiotropic effects of cryptochromes 1 and 2 on free-running and light-entrained murine circadian rhythms.
    Van Gelder RN; Gibler TM; Tu D; Embry K; Selby CP; Thompson CL; Sancar A
    J Neurogenet; 2002; 16(3):181-203. PubMed ID: 12696673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction.
    Lin C; Top D; Manahan CC; Young MW; Crane BR
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3822-3827. PubMed ID: 29581265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of mouse cryptochrome blue-light photoreceptor in circadian photoresponses.
    Thresher RJ; Vitaterna MH; Miyamoto Y; Kazantsev A; Hsu DS; Petit C; Selby CP; Dawut L; Smithies O; Takahashi JS; Sancar A
    Science; 1998 Nov; 282(5393):1490-4. PubMed ID: 9822380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further characterization of the phenotype of mCry1/mCry2-deficient mice.
    Mrosovsky N
    Chronobiol Int; 2001 Jul; 18(4):613-25. PubMed ID: 11587085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice.
    Oster H; Yasui A; van der Horst GT; Albrecht U
    Genes Dev; 2002 Oct; 16(20):2633-8. PubMed ID: 12381662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and structural analyses of cryptochrome. Vertebrate CRY regions responsible for interaction with the CLOCK:BMAL1 heterodimer and its nuclear localization.
    Hirayama J; Nakamura H; Ishikawa T; Kobayashi Y; Todo T
    J Biol Chem; 2003 Sep; 278(37):35620-8. PubMed ID: 12832412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants.
    Egan ES; Franklin TM; Hilderbrand-Chae MJ; McNeil GP; Roberts MA; Schroeder AJ; Zhang X; Jackson FR
    J Neurosci; 1999 May; 19(10):3665-73. PubMed ID: 10233998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure function analysis of mammalian cryptochromes.
    Tamanini F; Chaves I; Bajek MI; van der Horst GT
    Cold Spring Harb Symp Quant Biol; 2007; 72():133-9. PubMed ID: 18419270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock.
    Okamura H; Miyake S; Sumi Y; Yamaguchi S; Yasui A; Muijtjens M; Hoeijmakers JH; van der Horst GT
    Science; 1999 Dec; 286(5449):2531-4. PubMed ID: 10617474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct mechanisms of
    Baik LS; Au DD; Nave C; Foden AJ; Enrriquez-Villalva WK; Holmes TC
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23339-23344. PubMed ID: 31659046
    [No Abstract]   [Full Text] [Related]  

  • 14. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice.
    Selby CP; Thompson C; Schmitz TM; Van Gelder RN; Sancar A
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14697-702. PubMed ID: 11114194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice.
    Sujino M; Masumoto KH; Yamaguchi S; van der Horst GT; Okamura H; Inouye ST
    Curr Biol; 2003 Apr; 13(8):664-8. PubMed ID: 12699623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function.
    Czarna A; Berndt A; Singh HR; Grudziecki A; Ladurner AG; Timinszky G; Kramer A; Wolf E
    Cell; 2013 Jun; 153(6):1394-405. PubMed ID: 23746849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.
    Berndt A; Kottke T; Breitkreuz H; Dvorsky R; Hennig S; Alexander M; Wolf E
    J Biol Chem; 2007 Apr; 282(17):13011-21. PubMed ID: 17298948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei.
    Albus H; Bonnefont X; Chaves I; Yasui A; Doczy J; van der Horst GT; Meijer JH
    Curr Biol; 2002 Jul; 12(13):1130-3. PubMed ID: 12121621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm.
    Ishikawa T; Matsumoto A; Kato T; Togashi S; Ryo H; Ikenaga M; Todo T; Ueda R; Tanimura T
    Genes Cells; 1999 Jan; 4(1):57-65. PubMed ID: 10231393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells.
    Hoang N; Schleicher E; Kacprzak S; Bouly JP; Picot M; Wu W; Berndt A; Wolf E; Bittl R; Ahmad M
    PLoS Biol; 2008 Jul; 6(7):e160. PubMed ID: 18597555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.