These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 11818381)

  • 1. Analytical model of scanning laser polarimetry for retinal nerve fiber layer assessment.
    Knighton RW; Huang XR; Greenfield DS
    Invest Ophthalmol Vis Sci; 2002 Feb; 43(2):383-92. PubMed ID: 11818381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry.
    Choplin NT; Zhou Q; Knighton RW
    Ophthalmology; 2003 Apr; 110(4):719-25. PubMed ID: 12689893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal nerve fiber layer measurements do not change after LASIK for high myopia as measured by scanning laser polarimetry with custom compensation.
    Choplin NT; Schallhorn SC; Sinai M; Tanzer D; Tidwell JL; Zhou Q
    Ophthalmology; 2005 Jan; 112(1):92-7. PubMed ID: 15629826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal scanning laser polarimetry and methods to compensate for corneal birefringence.
    Zhou Q
    Bull Soc Belge Ophtalmol; 2006; (302):89-106. PubMed ID: 17265792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes.
    Sehi M; Ume S; Greenfield DS
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2099-104. PubMed ID: 17460267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Individualized compensation of anterior segment birefringence during scanning laser polarimetry.
    Zhou Q; Weinreb RN
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2221-8. PubMed ID: 12091420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic accuracy of scanning laser polarimetry with enhanced versus variable corneal compensation.
    Mai TA; Reus NJ; Lemij HG
    Ophthalmology; 2007 Nov; 114(11):1988-93. PubMed ID: 17459481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation.
    Bagga H; Greenfield DS; Feuer WJ
    Am J Ophthalmol; 2005 Mar; 139(3):437-46. PubMed ID: 15767051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of uncompensated corneal polarization on the detection of localized retinal nerve fiber layer defects.
    Kogure S; Kohwa H; Tsukahara S
    Ophthalmic Res; 2008; 40(2):61-8. PubMed ID: 18230917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between standard automated perimetry, HRT confocal scanning laser ophthalmoscopy, and GDx VCC scanning laser polarimetry.
    Reus NJ; Lemij HG
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4182-8. PubMed ID: 16249497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normative retardation data corrected for the corneal polarization axis with scanning laser polarimetry.
    Greenfield DS; Knighton RW; Feuer WJ; Schiffman JC
    Ophthalmic Surg Lasers Imaging; 2003; 34(2):165-71. PubMed ID: 12665235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of nerve fiber layer thickness before and after laser in situ keratomileusis using scanning laser polarimetry with variable corneal compensation.
    Halkiadakis I; Anglionto L; Ferensowicz M; Triebwasser RW; van Westenbrugge JA; Gimbel HV
    J Cataract Refract Surg; 2005 May; 31(5):1035-41. PubMed ID: 15975475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal nerve fiber layer measurement repeatability in scanning laser polarimetry with enhanced corneal compensation.
    Mai TA; Reus NJ; Lemij HG
    J Glaucoma; 2008; 17(4):269-74. PubMed ID: 18552611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scanning laser polarimetry with enhanced corneal compensation for detection of axonal loss in band atrophy of the optic nerve.
    Monteiro ML; Moura FC; Medeiros FA
    Am J Ophthalmol; 2008 Apr; 145(4):747-754. PubMed ID: 18241832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between retinal nerve fibre layer measurements and retinal sensitivity by scanning laser polarimetry with variable and enhanced corneal compensation.
    Choi J; Kim KH; Lee CH; Cho H; Sung KR; Choi JY; Cho BJ; Kook MS
    Br J Ophthalmol; 2008 Jul; 92(7):906-11. PubMed ID: 18577640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of subfoveal choroidal neovascularisation on macular imaging with scanning laser polarimetry of the retinal nerve fibre layer.
    Katsanos A; Kóthy P; Papp A; Holló G
    Eye (Lond); 2005 Feb; 19(2):117-22. PubMed ID: 15184960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationship is stronger with enhanced corneal compensation than with variable corneal compensation in scanning laser polarimetry.
    Mai TA; Reus NJ; Lemij HG
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1651-8. PubMed ID: 17389496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation.
    Reus NJ; Zhou Q; Lemij HG
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3870-7. PubMed ID: 16936099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison.
    Götzinger E; Pircher M; Baumann B; Hirn C; Vass C; Hitzenberger CK
    J Biophotonics; 2008 May; 1(2):129-39. PubMed ID: 19343644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma.
    Choi J; Cho HS; Lee CH; Kook MS
    Ophthalmology; 2006 Nov; 113(11):1954-60. PubMed ID: 16935338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.