These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11818416)

  • 1. Passerines versus nonpasserines: so far, no statistical differences in the scaling of avian energetics.
    Rezende EL; Swanson DL; Novoa FF; Bozinovic F
    J Exp Biol; 2002 Jan; 205(Pt 1):101-7. PubMed ID: 11818416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of free-ranging mammals, reptiles, and birds.
    Nagy KA; Girard IA; Brown TK
    Annu Rev Nutr; 1999; 19():247-77. PubMed ID: 10448524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between body mass and field metabolic rate among individual birds and mammals.
    Hudson LN; Isaac NJ; Reuman DC
    J Anim Ecol; 2013 Sep; 82(5):1009-20. PubMed ID: 23701213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological and scaling analysis of the energy expenditure of rest, activity, flight, and evaporative water loss in Passeriformes and non-Passeriformes in relation to seasonal migrations and to the occupation of boreal stations in high and moderate latitudes.
    Gavrilov VM
    Q Rev Biol; 2014 Jun; 89(2):107-50. PubMed ID: 24984324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative brain size and metabolism in birds.
    Armstrong E; Bergeron R
    Brain Behav Evol; 1985; 26(3-4):141-53. PubMed ID: 4084761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How differences in basal metabolism affect energy expenditure on self-maintenance and energy efficiency in passeriformes and non-passeriformes.
    Gavrilov VM
    Dokl Biol Sci; 2000; 371():152-5. PubMed ID: 10833646
    [No Abstract]   [Full Text] [Related]  

  • 7. Avian energetics: The passerine/non-passerine dichotomy.
    McNab BK
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Jan; 191():152-155. PubMed ID: 26456419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of metabolic scaling among the tetrapod: effect of phylogeny, the geologic time of class formation, and uniformity of species within a class.
    Gavrilov VM; Golubeva TB; Bushuev AV
    Integr Zool; 2022 Sep; 17(5):904-917. PubMed ID: 34751509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy.
    Swanson DL; Thomas NE; Liknes ET; Cooper SJ
    PLoS One; 2012; 7(3):e34271. PubMed ID: 22479584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basal metabolic rate in free-living tropical birds: the influence of phylogenetic, behavioral, and ecological factors.
    Bushuev A; Tolstenkov O; Zubkova E; Solovyeva E; Kerimov A
    Curr Zool; 2018 Feb; 64(1):33-43. PubMed ID: 29492036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standard energetics of leaf-nosed bats (Hipposideridae): its relationship to intermittent- and protracted-foraging tactics in bats and birds.
    Bonaccorso FJ; McNab BK
    J Comp Physiol B; 2003 Feb; 173(1):43-53. PubMed ID: 12592442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic plasticity in the scaling of avian basal metabolic rate.
    McKechnie AE; Freckleton RP; Jetz W
    Proc Biol Sci; 2006 Apr; 273(1589):931-7. PubMed ID: 16627278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral and ecological factors account for variation in the mass-independent energy expenditures of endotherms.
    McNab BK
    J Comp Physiol B; 2015 Jan; 185(1):1-13. PubMed ID: 25155184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods.
    Garland T; Ives AR
    Am Nat; 2000 Mar; 155(3):346-364. PubMed ID: 10718731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development syndromes in New World temperate and tropical songbirds.
    Austin SH; Robinson WD; Robinson TR; Ellis VA; Ricklefs RE
    PLoS One; 2020; 15(8):e0233627. PubMed ID: 32804928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal metabolic acclimatization in mountain chickadees and juniper titmice.
    Cooper SJ
    Physiol Biochem Zool; 2002; 75(4):386-95. PubMed ID: 12324895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New data from basal Australian songbird lineages show that complex structure of MHC class II β genes has early evolutionary origins within passerines.
    Balasubramaniam S; Bray RD; Mulder RA; Sunnucks P; Pavlova A; Melville J
    BMC Evol Biol; 2016 May; 16(1):112. PubMed ID: 27206579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The origin of homoiothermy--unsolved problem].
    Dol'nik VP
    Zh Obshch Biol; 2003; 64(6):451-62. PubMed ID: 14723169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clade-Specific Allometries in Avian Basal Metabolic Rate Demand a Broader Theory of Allometry.
    Giancarli SM; Dunham AE; O'Connor MP
    Physiol Biochem Zool; 2023; 96(3):216-232. PubMed ID: 37278588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duplication of accelerated evolution and growth hormone gene in passerine birds.
    Yuri T; Kimball RT; Braun EL; Braun MJ
    Mol Biol Evol; 2008 Feb; 25(2):352-61. PubMed ID: 18048401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.