BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 11818551)

  • 1. Structural basis for the conformational adaptability of apolipophorin III, a helix-bundle exchangeable apolipoprotein.
    Wang J; Sykes BD; Ryan RO
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1188-93. PubMed ID: 11818551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR solution structure and dynamics of an exchangeable apolipoprotein, Locusta migratoria apolipophorin III.
    Fan D; Zheng Y; Yang D; Wang J
    J Biol Chem; 2003 Jun; 278(23):21212-20. PubMed ID: 12621043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-triggered conformational switch of apolipophorin III helix bundle to an extended helix organization.
    Sahoo D; Weers PM; Ryan RO; Narayanaswami V
    J Mol Biol; 2002 Aug; 321(2):201-14. PubMed ID: 12144779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR evidence for a conformational adaptation of apolipophorin III upon lipid association.
    Wang J; Sahoo D; Sykes BD; Ryan RO
    Biochem Cell Biol; 1998; 76(2-3):276-83. PubMed ID: 9923696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into lipid surface recognition and reversible conformational adaptations of an exchangeable apolipoprotein by multidimensional heteronuclear NMR techniques.
    Wang J; Gagné SM; Sykes BD; Ryan RO
    J Biol Chem; 1997 Jul; 272(29):17912-20. PubMed ID: 9218415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence studies of lipid association-induced conformational adaptations of an exchangeable amphipathic apolipoprotein.
    Narayanaswami V; Frolov A; Schroeder F; Oikawa K; Kay CM; Ryan RO
    Arch Biochem Biophys; 1996 Oct; 334(1):143-50. PubMed ID: 8837749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular trigger of lipid binding-induced opening of a helix bundle exchangeable apolipoprotein.
    Narayanaswami V; Wang J; Schieve D; Kay CM; Ryan RO
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4366-71. PubMed ID: 10200268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of buried polar residues in helix bundle stability and lipid binding of apolipophorin III: destabilization by threonine 31.
    Weers PM; Abdullahi WE; Cabrera JM; Hsu TC
    Biochemistry; 2005 Jun; 44(24):8810-6. PubMed ID: 15952787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disulfide bond engineering to monitor conformational opening of apolipophorin III during lipid binding.
    Narayanaswami V; Wang J; Kay CM; Scraba DG; Ryan RO
    J Biol Chem; 1996 Oct; 271(43):26855-62. PubMed ID: 8900168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence studies of exchangeable apolipoprotein-lipid interactions. Superficial association of apolipophorin III with lipoprotein surfaces.
    Sahoo D; Narayanaswami V; Kay CM; Ryan RO
    J Biol Chem; 1998 Jan; 273(3):1403-8. PubMed ID: 9430675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An N-terminal three-helix fragment of the exchangeable insect apolipoprotein apolipophorin III conserves the lipid binding properties of wild-type protein.
    Dettloff M; Weers PM; Niere M; Kay CM; Ryan RO; Wiesner A
    Biochemistry; 2001 Mar; 40(10):3150-7. PubMed ID: 11258930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The helix bundle: a reversible lipid binding motif.
    Narayanaswami V; Kiss RS; Weers PM
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Feb; 155(2):123-33. PubMed ID: 19770066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Merck Frosst award lecture 1995. La conference Merck Frosst 1995. Structural studies of lipoproteins and their apolipoprotein components.
    Ryan RO
    Biochem Cell Biol; 1996; 74(2):155-64. PubMed ID: 9213424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III.
    Sahoo D; Narayanaswami V; Kay CM; Ryan RO
    Biochemistry; 2000 Jun; 39(22):6594-601. PubMed ID: 10828977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interhelical contacts are required for the helix bundle fold of apolipophorin III and its ability to interact with lipoproteins.
    Wang J; Narayanaswami V; Sykes BD; Ryan RO
    Protein Sci; 1998 Feb; 7(2):336-41. PubMed ID: 9521109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-guided protein engineering modulates helix bundle exchangeable apolipoprotein properties.
    Kiss RS; Weers PM; Narayanaswami V; Cohen J; Kay CM; Ryan RO
    J Biol Chem; 2003 Jun; 278(24):21952-9. PubMed ID: 12684504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes of an exchangeable apolipoprotein, apolipophorin III from Locusta migratoria, at low pH: correlation with lipid binding.
    Weers PM; Kay CM; Ryan RO
    Biochemistry; 2001 Jun; 40(25):7754-60. PubMed ID: 11412130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of apolipophorin-III in discoidal lipoproteins. Interhelical distances in the lipid-bound state and conformational change upon binding to lipid.
    Garda HA; Arrese EL; Soulages JL
    J Biol Chem; 2002 May; 277(22):19773-82. PubMed ID: 11896049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apolipophorin III: role model apolipoprotein.
    Weers PM; Ryan RO
    Insect Biochem Mol Biol; 2006 Apr; 36(4):231-40. PubMed ID: 16551537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of helices and loops in the ability of apolipophorin-III to interact with native lipoproteins and form discoidal lipoprotein complexes.
    Chetty PS; Arrese EL; Rodriguez V; Soulages JL
    Biochemistry; 2003 Dec; 42(51):15061-7. PubMed ID: 14690415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.