These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 11820315)

  • 1. Current aspects of lactate exchange: lactate/H+ transport in human skeletal muscle.
    Juel C
    Eur J Appl Physiol; 2001 Nov; 86(1):12-6. PubMed ID: 11820315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The expression of lactate transporters (MCT1 and MCT4) in heart and muscle.
    Bonen A
    Eur J Appl Physiol; 2001 Nov; 86(1):6-11. PubMed ID: 11820324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle.
    Enoki T; Yoshida Y; Lally J; Hatta H; Bonen A
    J Physiol; 2006 Nov; 577(Pt 1):433-43. PubMed ID: 16959859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T3 increases lactate transport and the expression of MCT4, but not MCT1, in rat skeletal muscle.
    Wang Y; Tonouchi M; Miskovic D; Hatta H; Bonen A
    Am J Physiol Endocrinol Metab; 2003 Sep; 285(3):E622-8. PubMed ID: 12900382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of acute and chronic exercise on sarcolemmal MCT1 and MCT4 contents in human skeletal muscles: current status.
    Thomas C; Bishop DJ; Lambert K; Mercier J; Brooks GA
    Am J Physiol Regul Integr Comp Physiol; 2012 Jan; 302(1):R1-14. PubMed ID: 22012699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of streptozotocin-induced diabetes on markers of skeletal muscle metabolism and monocarboxylate transporter 1 to monocarboxylate transporter 4 transporters.
    Py G; Lambert K; Milhavet O; Eydoux N; Préfaut C; Mercier J
    Metabolism; 2002 Jul; 51(7):807-13. PubMed ID: 12077722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endurance training alters skeletal muscle MCT contents in T2DM men.
    Opitz D; Lenzen E; Schiffer T; Hermann R; Hellmich M; Bloch W; Brixius K; Brinkmann C
    Int J Sports Med; 2014 Dec; 35(13):1065-71. PubMed ID: 25009968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of high-intensity training on MCT1, MCT4, and NBC expressions in rat skeletal muscles: influence of chronic metabolic alkalosis.
    Thomas C; Bishop D; Moore-Morris T; Mercier J
    Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E916-22. PubMed ID: 17609257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle contraction increases lactate transport while reducing sarcolemmal MCT4, but not MCT1.
    Tonouchi M; Hatta H; Bonen A
    Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1062-9. PubMed ID: 11934671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of strength training on muscle lactate release and MCT1 and MCT4 content in healthy and type 2 diabetic humans.
    Juel C; Holten MK; Dela F
    J Physiol; 2004 Apr; 556(Pt 1):297-304. PubMed ID: 14724187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of pH regulation and lactate/H+ transport capacity for work production during supramaximal exercise in humans.
    Messonnier L; Kristensen M; Juel C; Denis C
    J Appl Physiol (1985); 2007 May; 102(5):1936-44. PubMed ID: 17289910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle.
    Bonen A; Heynen M; Hatta H
    Appl Physiol Nutr Metab; 2006 Feb; 31(1):31-9. PubMed ID: 16604139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of training intensity on muscle lactate transporters and lactate threshold of cross-country skiers.
    Evertsen F; Medbø JI; Bonen A
    Acta Physiol Scand; 2001 Oct; 173(2):195-205. PubMed ID: 11683677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of weight loss on lactate transporter expression in skeletal muscle of obese subjects.
    Metz L; Mercier J; Tremblay A; Alméras N; Joanisse DR
    J Appl Physiol (1985); 2008 Mar; 104(3):633-8. PubMed ID: 18079261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate/H+ transport kinetics in rat skeletal muscle related to fibre type and changes in transport capacity.
    Juel C; Pilegaard H
    Pflugers Arch; 1998 Jul; 436(4):560-4. PubMed ID: 9683729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of monocarboxylate transport in human kidney HK-2 cells.
    Wang Q; Lu Y; Yuan M; Darling IM; Repasky EA; Morris ME
    Mol Pharm; 2006; 3(6):675-85. PubMed ID: 17140255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle.
    Juel C; Klarskov C; Nielsen JJ; Krustrup P; Mohr M; Bangsbo J
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E245-51. PubMed ID: 14559724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of hypoxia-induced anorexia and right ventricular hypertrophy on lactate transport and MCT expression in rat muscle.
    Py G; Eydoux N; Lambert K; Chapot R; Koulmann N; Sanchez H; Bahi L; Peinnequin A; Mercier J; Bigard AX
    Metabolism; 2005 May; 54(5):634-44. PubMed ID: 15877294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PGC-1alpha increases skeletal muscle lactate uptake by increasing the expression of MCT1 but not MCT2 or MCT4.
    Benton CR; Yoshida Y; Lally J; Han XX; Hatta H; Bonen A
    Physiol Genomics; 2008 Sep; 35(1):45-54. PubMed ID: 18523157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans.
    Thomas C; Perrey S; Lambert K; Hugon G; Mornet D; Mercier J
    J Appl Physiol (1985); 2005 Mar; 98(3):804-9. PubMed ID: 15531559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.