These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 11820937)
1. Cellular toxicity of cadmium ions and their detoxification by heavy metal-specific plant peptides, phytochelatins, expressed in Mammalian cells. Takagi M; Satofuka H; Amano S; Mizuno H; Eguchi Y; Hirata K; Miyamoto K; Fukui K; Imanaka T J Biochem; 2002 Feb; 131(2):233-9. PubMed ID: 11820937 [TBL] [Abstract][Full Text] [Related]
2. Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Chuang SM; Wang IC; Yang JL Carcinogenesis; 2000 Jul; 21(7):1423-32. PubMed ID: 10874022 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal detoxification in higher plants--a review. Zenk MH Gene; 1996 Nov; 179(1):21-30. PubMed ID: 8955625 [TBL] [Abstract][Full Text] [Related]
4. Metal-binding properties of phytochelatin-related peptides. Satofuka H; Fukui T; Takagi M; Atomi H; Imanaka T J Inorg Biochem; 2001 Sep; 86(2-3):595-602. PubMed ID: 11566332 [TBL] [Abstract][Full Text] [Related]
5. Superoxide-mediated early oxidation and activation of ASK1 are important for initiating methylglyoxal-induced apoptosis process. Du J; Suzuki H; Nagase F; Akhand AA; Ma XY; Yokoyama T; Miyata T; Nakashima I Free Radic Biol Med; 2001 Aug; 31(4):469-78. PubMed ID: 11498280 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the tolerance of zebrafish (Danio rerio) to heavy metal toxicity by the expression of plant phytochelatin synthase. Konishi T; Matsumoto S; Tsuruwaka Y; Shiraki K; Hirata K; Tamaru Y; Takagi M J Biotechnol; 2006 Apr; 122(3):316-25. PubMed ID: 16442656 [TBL] [Abstract][Full Text] [Related]
7. The role of mitogen-activated protein kinase in cadmium-induced primary rat cerebral cortical neurons apoptosis via a mitochondrial apoptotic pathway. Yuan Y; Jiang C; Hu F; Wang Q; Zhang K; Wang Y; Gu J; Liu X; Bian J; Liu Z J Trace Elem Med Biol; 2015 Jan; 29():275-83. PubMed ID: 25043952 [TBL] [Abstract][Full Text] [Related]
8. Calcium-mediated activation of c-Jun NH2-terminal kinase (JNK) and apoptosis in response to cadmium in murine macrophages. Kim J; Sharma RP Toxicol Sci; 2004 Oct; 81(2):518-27. PubMed ID: 15254339 [TBL] [Abstract][Full Text] [Related]
9. A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. Vatamaniuk OK; Bucher EA; Ward JT; Rea PA J Biol Chem; 2001 Jun; 276(24):20817-20. PubMed ID: 11313333 [TBL] [Abstract][Full Text] [Related]
10. Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis. Saeki K; Kobayashi N; Inazawa Y; Zhang H; Nishitoh H; Ichijo H; Saeki K; Isemura M; Yuo A Biochem J; 2002 Dec; 368(Pt 3):705-20. PubMed ID: 12206715 [TBL] [Abstract][Full Text] [Related]
11. Effects of interactions between cadmium and zinc on phytochelatin and glutathione production in wheat (Triticum aestivum L.). Sun Q; Wang XR; Ding SM; Yuan XF Environ Toxicol; 2005 Apr; 20(2):195-201. PubMed ID: 15793816 [TBL] [Abstract][Full Text] [Related]
12. Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Gong JM; Lee DA; Schroeder JI Proc Natl Acad Sci U S A; 2003 Aug; 100(17):10118-23. PubMed ID: 12909714 [TBL] [Abstract][Full Text] [Related]
13. [Molecular mechanisms of plant resistance to cadmium toxicity]. Xu Z; Shen G; Zhu C; Xu L; He Y; Yu G Ying Yong Sheng Tai Xue Bao; 2006 Jun; 17(6):1112-6. PubMed ID: 16964952 [TBL] [Abstract][Full Text] [Related]
14. Optical spectroscopic and reverse-phase HPLC analyses of Hg(II) binding to phytochelatins. Mehra RK; Miclat J; Kodati VR; Abdullah R; Hunter TC; Mulchandani P Biochem J; 1996 Feb; 314 ( Pt 1)(Pt 1):73-82. PubMed ID: 8660312 [TBL] [Abstract][Full Text] [Related]
16. Rapid and selective apoptosis in human leukemic cells induced by Aplidine through a Fas/CD95- and mitochondrial-mediated mechanism. Gajate C; An F; Mollinedo F Clin Cancer Res; 2003 Apr; 9(4):1535-45. PubMed ID: 12684430 [TBL] [Abstract][Full Text] [Related]
17. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. Clemens S; Kim EJ; Neumann D; Schroeder JI EMBO J; 1999 Jun; 18(12):3325-33. PubMed ID: 10369673 [TBL] [Abstract][Full Text] [Related]
18. Initiation of caspase-independent death in mouse mesangial cells by Cd2+: involvement of p38 kinase and CaMK-II. Liu Y; Templeton DM J Cell Physiol; 2008 Nov; 217(2):307-18. PubMed ID: 18506790 [TBL] [Abstract][Full Text] [Related]
19. Heteroexpression of the wheat phytochelatin synthase gene (TaPCS1) in rice enhances cadmium sensitivity. Wang F; Wang Z; Zhu C Acta Biochim Biophys Sin (Shanghai); 2012 Oct; 44(10):886-93. PubMed ID: 23017837 [TBL] [Abstract][Full Text] [Related]
20. Cadmium uptake by Caco-2 cells: effects of Cd complexation by chloride, glutathione, and phytochelatins. Jumarie C; Fortin C; Houde M; Campbell PG; Denizeau F Toxicol Appl Pharmacol; 2001 Jan; 170(1):29-38. PubMed ID: 11141353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]