These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 1182109)

  • 1. The role of bound calcium ions in thermostable, proteolytic enzymes. II. Studies on thermolysin, the thermostable protease from Bacillus thermoproteolyticus.
    Voordouw G; Roche RS
    Biochemistry; 1975 Oct; 14(21):4667-73. PubMed ID: 1182109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of bound calcium ions in thermostable, proteolytic enzymes. I. Studies on thermomycolase, the thermostable protease fron the fungus Malbranchea pulchella.
    Voordouw G; Roche RS
    Biochemistry; 1975 Oct; 14(21):4659-66. PubMed ID: 1182108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of bound calcium ions in thermostable, proteolytic enzymes. Separation of intrinsic and calcium ion contributions to the kinetic thermal stability.
    Voordouw G; Milo C; Roche RS
    Biochemistry; 1976 Aug; 15(17):3716-24. PubMed ID: 8092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease.
    Tajima M; Urabe I; Yutani K; Okada H
    Eur J Biochem; 1976 Apr; 64(1):243-7. PubMed ID: 819262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal stability of homologous neutral metalloendopeptidases in thermophilic and mesophilic bacteria: structural considerations.
    Pangburn MK; Levy PL; Walsh KA; Neurath H
    Experientia Suppl; 1976; 26():19-30. PubMed ID: 820564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermolysin and Bacillus subtilis neutral protease. Conformation and stability of two homologous neutral metalloendopeptidases.
    Grandi C; Vita C; Dalzoppo D; Fontana A
    Int J Pept Protein Res; 1980 Oct; 16(4):327-38. PubMed ID: 6780484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic activity of thermolysin under extremes of pressure and temperature: modulation by metal ions.
    Kudryashova EV; Mozhaev VV; Balny C
    Biochim Biophys Acta; 1998 Jul; 1386(1):199-210. PubMed ID: 9675281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of site-directed mutagenesis in the N-terminal domain of thermolysin on its stabilization.
    Kawasaki Y; Yasukawa K; Inouye K
    J Biochem; 2013 Jan; 153(1):85-92. PubMed ID: 23087322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and stability of thermophilic enzymes. Studies on thermolysin.
    Fontana A
    Biophys Chem; 1988 Feb; 29(1-2):181-93. PubMed ID: 3129040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Calcium in the thermal stability of thermolysin.
    Dahlquist FW; Long JW; Bigbee WL
    Biochemistry; 1976 Mar; 15(5):1103-11. PubMed ID: 814920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Domain unfolding and the stability of thermolysin in guanidine hydrochloride.
    Corbett RJ; Ahmad F; Roche RS
    Biochem Cell Biol; 1986 Oct; 64(10):953-61. PubMed ID: 3801183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure dependence of thermolysin catalysis.
    Fukuda M; Kunugi S
    Eur J Biochem; 1984 Aug; 142(3):565-70. PubMed ID: 6432533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent folding of the carboxyl-terminal fragment 228-316 of thermolysin.
    Vita C; Dalzoppo D; Fontana A; Rashin AA
    Biochemistry; 1984 Nov; 23(23):5512-9. PubMed ID: 6439241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance studies of the active-site region of thermolysin.
    Bigbee WL; Dahlquist FW
    Biochemistry; 1974 Aug; 13(17):3542-9. PubMed ID: 4367427
    [No Abstract]   [Full Text] [Related]  

  • 16. The thermodynamics of calcium binding to thermolysin.
    Buchanan JD; Corbett RJ; Roche RS
    Biophys Chem; 1986 Mar; 23(3-4):183-99. PubMed ID: 3708095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of calcium binding on the thermal stability of 'thermitase', a serine protease from Thermoactinomyces vulgaris.
    Frömmel C; Höhne WE
    Biochim Biophys Acta; 1981 Aug; 670(1):25-31. PubMed ID: 7023547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin.
    Sánchez-Ruiz JM; López-Lacomba JL; Cortijo M; Mateo PL
    Biochemistry; 1988 Mar; 27(5):1648-52. PubMed ID: 3365417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of neutral protease from Bacillus cereus at 0.2-nm resolution.
    Stark W; Pauptit RA; Wilson KS; Jansonius JN
    Eur J Biochem; 1992 Jul; 207(2):781-91. PubMed ID: 1633827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single calcium binding site is crucial for the calcium-dependent thermal stability of thermolysin-like proteases.
    Veltman OR; Vriend G; Berendsen HJ; Van den Burg B; Venema G; Eijsink VG
    Biochemistry; 1998 Apr; 37(15):5312-9. PubMed ID: 9548763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.