These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 1182109)

  • 21. The structural and functional roles of metal ions in thermolysin.
    Roche RS; Voordouw G
    CRC Crit Rev Biochem; 1978; 5(1):1-23. PubMed ID: 357082
    [No Abstract]   [Full Text] [Related]  

  • 22. Cloning and expression in Bacillus subtilis of the npr gene from Bacillus thermoproteolyticus Rokko coding for the thermostable metalloprotease thermolysin.
    O'Donohue MJ; Roques BP; Beaumont A
    Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):599-603. PubMed ID: 8002967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on the formation and stability of a complex between Streptomyces proteinaceous metalloprotease inhibitor and thermolysin.
    Kunugi S; Yanagi Y; Oda K
    Eur J Biochem; 1999 Feb; 259(3):815-20. PubMed ID: 10092869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autolysis of thermolysin. Isolation and characterization of a folded three-fragment complex.
    Fassina G; Vita C; Dalzoppo D; Zamai M; Zambonin M; Fontana A
    Eur J Biochem; 1986 Apr; 156(2):221-8. PubMed ID: 3084249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Refined 1.8 A X-ray crystal structure of astacin, a zinc-endopeptidase from the crayfish Astacus astacus L. Structure determination, refinement, molecular structure and comparison with thermolysin.
    Gomis-Rüth FX; Stöcker W; Huber R; Zwilling R; Bode W
    J Mol Biol; 1993 Feb; 229(4):945-68. PubMed ID: 8445658
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases.
    Vriend G; Eijsink V
    J Comput Aided Mol Des; 1993 Aug; 7(4):367-96. PubMed ID: 8229092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding between thermolysin and its specific inhibitor, N-phosphoryl-L-leucyl-L-tryptophan (PLT).
    Kitagishi K; Hiromi K
    J Biochem; 1986 Jan; 99(1):191-7. PubMed ID: 3957894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Boilysin and thermolysin in dipeptide synthesis: a comparative study.
    Kühn D; Dürrschmidt P; Mansfeld J; Ulbrich-Hofmann R
    Biotechnol Appl Biochem; 2002 Aug; 36(1):71-6. PubMed ID: 12149125
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermostability at ultrahigh temperatures of thermolysin and a protease from a psychrotrophic Pseudomonas.
    Barach JT; Adams DM
    Biochim Biophys Acta; 1977 Dec; 485(2):417-23. PubMed ID: 411519
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of Val 315 located in the C-terminal region of thermolysin in its expression in Escherichia coli and its thermal stability.
    Kojima K; Nakata H; Inouye K
    Biochim Biophys Acta; 2014 Feb; 1844(2):330-8. PubMed ID: 24192395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering thermolysin-like proteases whose stability is largely independent of calcium.
    Veltman OR; Vriend G; van den Burg B; Hardy F; Venema G; Eijsink VG
    FEBS Lett; 1997 Mar; 405(2):241-4. PubMed ID: 9089298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The cooperative binding of two calcium ions to the double site of apothermolysin.
    Voordouw G; Roche RS
    Biochemistry; 1974 Nov; 13(24):5017-21. PubMed ID: 4433534
    [No Abstract]   [Full Text] [Related]  

  • 33. Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution.
    Smith CA; Toogood HS; Baker HM; Daniel RM; Baker EN
    J Mol Biol; 1999 Dec; 294(4):1027-40. PubMed ID: 10588904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of autodegradation sites of thermolysin and enhancement of its thermostability by modifying Leu155 at an autodegradation site.
    Matsumiya Y; Nishikawa K; Aoshima H; Inouye K; Kubo M
    J Biochem; 2004 Apr; 135(4):547-53. PubMed ID: 15115781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermostable neutral protease resembling thermolysin derived from Bacillus brevis MIB001.
    Takii Y; Urata Y; Ueno N
    Biosci Biotechnol Biochem; 1998 May; 62(5):1028-30. PubMed ID: 9648239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiochemical properties of thermomycolase, the thermostable, extracellular, serine protease of the fungus Malbranchea pulchella.
    Voordouw G; Gaucher GM; Roche RS
    Can J Biochem; 1974 Nov; 52(11):981-90. PubMed ID: 4429868
    [No Abstract]   [Full Text] [Related]  

  • 37. Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis.
    Holland DR; Tronrud DE; Pley HW; Flaherty KM; Stark W; Jansonius JN; McKay DB; Matthews BW
    Biochemistry; 1992 Nov; 31(46):11310-6. PubMed ID: 1445869
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of mutations of thermolysin, as N116 to asp and asp150 to glu, on salt-induced activation and stabilization.
    Menach E; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2013; 77(4):741-6. PubMed ID: 23563542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence regions of Bacilli metalloproteinases that can affect enzyme thermostability.
    Strongin A; Kostrov S; Kaydalova N
    Protein Seq Data Anal; 1991 Dec; 4(6):355-61. PubMed ID: 1812491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding between thermolysin and talopeptin (MKI) in which the tryptophan residue was converted into kynurenine.
    Kitagishi K; Hiromi K; Tokushige M
    J Biochem; 1983 Apr; 93(4):1045-54. PubMed ID: 6863233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.