BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 1182138)

  • 1. The intermicellar bile salt concentration in equilibrium with the mixed-micelles of human bile.
    Duane WC
    Biochim Biophys Acta; 1975 Aug; 398(2):275-86. PubMed ID: 1182138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation and quantitation of cholesterol "carriers" in bile.
    Donovan JM; Carey MC
    Hepatology; 1990 Sep; 12(3 Pt 2):94S-104S; discussion 104S-105S. PubMed ID: 2210665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions.
    Mazer NA; Benedek GB; Carey MC
    Biochemistry; 1980 Feb; 19(4):601-15. PubMed ID: 7356951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bile salt micelle can sustain more cholesterol in the intermicellar aqueous phase than the maximal aqueous solubility.
    Chijiiwa K; Nagai M
    Arch Biochem Biophys; 1989 May; 270(2):472-7. PubMed ID: 2705774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile.
    Donovan JM; Timofeyeva N; Carey MC
    J Lipid Res; 1991 Sep; 32(9):1501-12. PubMed ID: 1753218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of mixed micelles bile salt--lecithin--cholesterol in bile and presence of a lipoproteic complex.
    Lairon D; Lafont H; Hauton JC
    Biochimie; 1972; 54(4):529-30. PubMed ID: 4646822
    [No Abstract]   [Full Text] [Related]  

  • 7. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile.
    Cohen DE; Thurston GM; Chamberlin RA; Benedek GB; Carey MC
    Biochemistry; 1998 Oct; 37(42):14798-814. PubMed ID: 9778354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholesterol nucleates rapidly from mixed micelles in the prairie dog.
    Ahrendt SA; Fox-Talbot K; Kaufman HS; Lillemoe KD; Pitt HA
    Biochim Biophys Acta; 1994 Feb; 1211(1):7-13. PubMed ID: 8123684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous bile salt-lecithin-cholesterol systems: equilibrium aspects.
    Carey MC
    Hepatology; 1984; 4(5 Suppl):151S-154S. PubMed ID: 6479872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural dimorphism of bile salt/lecithin mixed micelles. A possible regulatory mechanism for cholesterol solubility in bile? X-ray structure analysis.
    Müller K
    Biochemistry; 1981 Jan; 20(2):404-14. PubMed ID: 7470489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The physical chemistry of cholesterol solubility in bile. Relationship to gallstone formation and dissolution in man.
    Carey MC; Small DM
    J Clin Invest; 1978 Apr; 61(4):998-1026. PubMed ID: 659586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of mixed micellar bile models supersaturated with cholesterol.
    Lichtenberg D; Ragimova S; Bor A; Almog S; Vinkler C; Kalina M; Peled Y; Halpern Z
    Biophys J; 1988 Dec; 54(6):1013-25. PubMed ID: 3233264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bile salt structure and phase equilibria in aqueous bile salt and bile salt-lecithin systems.
    Carey MC
    Hepatology; 1984; 4(5 Suppl):138S-142S. PubMed ID: 6479869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of bile vesicles and micelles by gel filtration chromatography: the importance of the intermicellar bile salt concentration.
    Stone BG; Larsen LJ; Knoll DA; Bloomfield VA; Duane WC
    J Lab Clin Med; 1992 May; 119(5):557-65. PubMed ID: 1583413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dialysis of gallbladder bile. Correlation between rates of exit of bile salts and bilirubin from the dialysis sac.
    Kodsi BE
    Am J Dig Dis; 1977 Apr; 22(4):315-7. PubMed ID: 855848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-elastic light scattering studies of native hepatic bile from the dog: comparison with aggregative behavior of model biliary lipid systems.
    Mazer NA; Schurtenberg P; Carey MC; Preisig R; Weigand K; Känzig W
    Biochemistry; 1984 Apr; 23(9):1994-2005. PubMed ID: 6722132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleation of cholesterol from vesicles isolated from bile of patients with and without cholesterol gallstones.
    Harvey PR; Somjen G; Lichtenberg MS; Petrunka C; Gilat T; Strasberg SM
    Biochim Biophys Acta; 1987 Sep; 921(2):198-204. PubMed ID: 3651484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural aspects of bile salt-lecithin mixed micelles.
    Müller K
    Hepatology; 1984; 4(5 Suppl):134S-137S. PubMed ID: 6090294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion of mixed micelles of bile salt-lecithin in amylopectin gels: a Fourier transform infrared microspectroscopy approach.
    Sun L; Durrani CM; Donald AM; Fillery-Travis AJ; Leney J
    Biophys Chem; 1996 Oct; 61(2-3):143-50. PubMed ID: 8956485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.