These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 1182143)
1. Two-carrier models for mediated transport. I. Theoretical analysis of several two-carrier models. Eilam Y Biochim Biophys Acta; 1975 Sep; 401(3):349-63. PubMed ID: 1182143 [TBL] [Abstract][Full Text] [Related]
2. Carrier and non-carrier models for sugar transport in the human red blood cell. Lieb WR; Stein WD Biochim Biophys Acta; 1972 Apr; 265(2):187-207. PubMed ID: 4555470 [No Abstract] [Full Text] [Related]
3. Two-carrier models for mediated transport. II. Glucose and galactose equilibrium exchange experiments in human erythrocytes as a test for several two-carrier models. Eilam Y Biochim Biophys Acta; 1975 Sep; 401(3):364-9. PubMed ID: 1182144 [TBL] [Abstract][Full Text] [Related]
4. [Properties of an asymmetrical carrier model for the transport of sugars by human erythrocytes]. Geck P Biochim Biophys Acta; 1971 Aug; 241(2):462-72. PubMed ID: 5159793 [No Abstract] [Full Text] [Related]
5. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers. Ginsburg H Biochim Biophys Acta; 1978 Jan; 506(1):119-35. PubMed ID: 620020 [TBL] [Abstract][Full Text] [Related]
6. Zero-trans and infinite-cis uptake of galactose in human erythrocytes. Ginsburg H; Stein WD Biochim Biophys Acta; 1975 Mar; 382(3):353-68. PubMed ID: 1125238 [TBL] [Abstract][Full Text] [Related]
8. Anomalous transport kinetics and the glucose carrier hypothesis. Regen DM; Tarpley HL Biochim Biophys Acta; 1974 Mar; 339(2):218-33. PubMed ID: 4827852 [No Abstract] [Full Text] [Related]
9. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK; Heard KS; Carruthers A Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697 [TBL] [Abstract][Full Text] [Related]
10. Structural requirements for binding to the sugar-transport system of the human erythrocyte. Barnett JE; Holman GD; Munday KA Biochem J; 1973 Feb; 131(2):211-21. PubMed ID: 4722437 [TBL] [Abstract][Full Text] [Related]
11. Carrier-mediated transport across the erythrocyte membrane: a rigorous test for the simple carrier model. Hoare DG Biochem J; 1972 Apr; 127(3):62P. PubMed ID: 5076209 [No Abstract] [Full Text] [Related]
12. Zero-trans and equilibrium-exchange efflux and infinite-trans uptake of galactose by human erythrocytes. Ginsburg H; Ram D Biochim Biophys Acta; 1975 Mar; 382(3):369-76. PubMed ID: 1125239 [TBL] [Abstract][Full Text] [Related]
13. The kinetics of glucose transport in human red blood cells. Lowe AG; Walmsley AR Biochim Biophys Acta; 1986 May; 857(2):146-54. PubMed ID: 3707948 [TBL] [Abstract][Full Text] [Related]
14. Polyol permeability of the human red cell. Interpretation of glucose transport in terms of a pore. Bowman RJ; Lwitt DG Biochim Biophys Acta; 1977 Apr; 466(1):68-83. PubMed ID: 856270 [TBL] [Abstract][Full Text] [Related]
15. The binding and translocation steps in transport as related to substrate structure. A study of the choline carrier of erythrocytes. Devés R; Krupka RM Biochim Biophys Acta; 1979 Nov; 557(2):469-85. PubMed ID: 497194 [TBL] [Abstract][Full Text] [Related]
16. A new kinetic analysis of the leucine transport carrier in erythrocytes. Hoare DG Biomembranes; 1972; 3():107-16. PubMed ID: 4666508 [No Abstract] [Full Text] [Related]
17. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier. Devés R; Krupka RM Biochim Biophys Acta; 1978 Jul; 510(2):339-48. PubMed ID: 667049 [TBL] [Abstract][Full Text] [Related]
18. Rejection criteria for the asymmetric carrier and their application to glucose transport in the human red blood cell. Hankin BL; Lieb WR; Stein WD Biochim Biophys Acta; 1972 Oct; 288(1):114-26. PubMed ID: 4640379 [No Abstract] [Full Text] [Related]
19. Kinetic parameters of glucose efflux from human red blood cells under zero-trans conditions. Karlish SJ; Lieb WR; Ram D; Stein WD Biochim Biophys Acta; 1972 Jan; 255(1):126-32. PubMed ID: 5010989 [No Abstract] [Full Text] [Related]
20. Transport of uridine in human red blood cells. Demonstration of a simple carrier-mediated process. Cabantchik ZI; Ginsburg H J Gen Physiol; 1977 Jan; 69(1):75-96. PubMed ID: 833566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]