BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1182144)

  • 1. Two-carrier models for mediated transport. II. Glucose and galactose equilibrium exchange experiments in human erythrocytes as a test for several two-carrier models.
    Eilam Y
    Biochim Biophys Acta; 1975 Sep; 401(3):364-9. PubMed ID: 1182144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galactose transport in human erythrocytes. The transport mechanism is resolved into two simple asymmetric antiparallel carriers.
    Ginsburg H
    Biochim Biophys Acta; 1978 Jan; 506(1):119-35. PubMed ID: 620020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane.
    Baker GF; Naftalin RJ
    Biochim Biophys Acta; 1979 Feb; 550(3):474-84. PubMed ID: 420829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of temperature on the transport of galactose in human erythrocytes.
    Ginsburg H; Yeroushalmy S
    J Physiol; 1978 Sep; 282():399-417. PubMed ID: 722542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of erythrocyte lipid and of glucose and galactose concentration on transport of the sugars across a water-butanol interface.
    Moore TJ; Schlowsky B
    J Lipid Res; 1969 Mar; 10(2):216-9. PubMed ID: 5782359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Properties of an asymmetrical carrier model for the transport of sugars by human erythrocytes].
    Geck P
    Biochim Biophys Acta; 1971 Aug; 241(2):462-72. PubMed ID: 5159793
    [No Abstract]   [Full Text] [Related]  

  • 7. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport.
    Helgerson AL; Carruthers A
    Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zero-trans and equilibrium-exchange efflux and infinite-trans uptake of galactose by human erythrocytes.
    Ginsburg H; Ram D
    Biochim Biophys Acta; 1975 Mar; 382(3):369-76. PubMed ID: 1125239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell.
    Eilam Y; Stein WD
    Biochim Biophys Acta; 1972 Apr; 266(1):161-73. PubMed ID: 5041086
    [No Abstract]   [Full Text] [Related]  

  • 10. The kinetics of selective biological transport. I. Determination of transport constants for sugar movements in human erythrocytes.
    Miller DM
    Biophys J; 1965 Jul; 5(4):407-15. PubMed ID: 5861699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of sugar transfer across erythrocyte membranes.
    Stein WD
    Ann N Y Acad Sci; 1972 Jun; 195():412-28. PubMed ID: 4504102
    [No Abstract]   [Full Text] [Related]  

  • 12. An alternative to the carrier model for sugar transport across red cell membranes.
    Naftalin RJ
    Biomembranes; 1972; 3():117-26. PubMed ID: 4666509
    [No Abstract]   [Full Text] [Related]  

  • 13. A model for sugar transport across red cell membranes without carriers.
    Naftalin RJ
    Biochim Biophys Acta; 1970 Jul; 211(1):65-78. PubMed ID: 5470389
    [No Abstract]   [Full Text] [Related]  

  • 14. A kinetic analysis of L-tryptophan transport in human red blood cells.
    Rosenberg R
    Biochim Biophys Acta; 1981 Dec; 649(2):262-8. PubMed ID: 7317397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of selective biological transport. V. Further data on the erythrocyte-monosaccharide transport system.
    Miller DM
    Biophys J; 1971 Nov; 11(11):915-23. PubMed ID: 5113002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetry of the hexose transfer system in human erythrocytes. Experiments with non-transportable inhibitors.
    Baker GF; Basketter DA; Widdas WF
    J Physiol; 1978 May; 278():377-88. PubMed ID: 671317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternate models for shared carriers or a single maturing carrier in hexose uptake into rabbit jejunum in vitro.
    Thomson AB; Gardner ML; Atkins GL
    Biochim Biophys Acta; 1987 Sep; 903(1):229-40. PubMed ID: 3651454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose transport kinetics in human red blood cells.
    Gasbjerg PK; Brahm J
    Biochim Biophys Acta; 1991 Feb; 1062(1):83-93. PubMed ID: 1998714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of unstirred layers in control of sugar movements across red cell membranes.
    Naftalin RJ
    Biochim Biophys Acta; 1971 Jun; 233(3):635-43. PubMed ID: 5113922
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.