These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 11821531)

  • 1. Muscle fatigue: lactic acid or inorganic phosphate the major cause?
    Westerblad H; Allen DG; Lännergren J
    News Physiol Sci; 2002 Feb; 17():17-21. PubMed ID: 11821531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of phosphate and calcium stores in muscle fatigue.
    Allen DG; Westerblad H
    J Physiol; 2001 Nov; 536(Pt 3):657-65. PubMed ID: 11691862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue.
    Westerblad H; Allen DG; Bruton JD; Andrade FH; Lännergren J
    Acta Physiol Scand; 1998 Mar; 162(3):253-60. PubMed ID: 9578370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle fatigue: the role of intracellular calcium stores.
    Allen DG; Kabbara AA; Westerblad Hk
    Can J Appl Physiol; 2002 Feb; 27(1):83-96. PubMed ID: 11880693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle contraction and fatigue. The role of adenosine 5'-diphosphate and inorganic phosphate.
    McLester JR
    Sports Med; 1997 May; 23(5):287-305. PubMed ID: 9181667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in the understanding of skeletal muscle fatigue.
    Westerblad H; Allen DG
    Curr Opin Rheumatol; 2002 Nov; 14(6):648-52. PubMed ID: 12410085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactic acid and exercise performance : culprit or friend?
    Cairns SP
    Sports Med; 2006; 36(4):279-91. PubMed ID: 16573355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights on sarcoplasmic reticulum calcium regulation in muscle fatigue.
    Fitts RH
    J Appl Physiol (1985); 2011 Aug; 111(2):345-6. PubMed ID: 21680881
    [No Abstract]   [Full Text] [Related]  

  • 9. Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue.
    Allen DG; Clugston E; Petersen Y; Röder IV; Chapman B; Rudolf R
    J Appl Physiol (1985); 2011 Aug; 111(2):358-66. PubMed ID: 21512148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Lindinger MI
    J Appl Physiol (1985); 2006 Jun; 100(6):2100. PubMed ID: 16714418
    [No Abstract]   [Full Text] [Related]  

  • 11. Skeletal muscle function: role of ionic changes in fatigue, damage and disease.
    Allen DG
    Clin Exp Pharmacol Physiol; 2004 Aug; 31(8):485-93. PubMed ID: 15298539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Gladden LB; Hogan MC
    J Appl Physiol (1985); 2006 Jun; 100(6):2100-1. PubMed ID: 16767812
    [No Abstract]   [Full Text] [Related]  

  • 13. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Vissing J
    J Appl Physiol (1985); 2006 Jun; 100(6):2101. PubMed ID: 16767813
    [No Abstract]   [Full Text] [Related]  

  • 14. Acidosis Is Not a Significant Cause of Skeletal Muscle Fatigue.
    Westerblad H
    Med Sci Sports Exerc; 2016 Nov; 48(11):2339-2342. PubMed ID: 27755383
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of alpha-cyano-4-hydroxycinnamic acid on fatigue and recovery of isolated mouse muscle.
    Clarke PD; Clift DL; Dooldeniya M; Burnett CA; Curtin NA
    J Muscle Res Cell Motil; 1995 Dec; 16(6):611-7. PubMed ID: 8750232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of intracellular injections of phosphate on intracellular calcium and force in single fibres of mouse skeletal muscle.
    Westerblad H; Allen DG
    Pflugers Arch; 1996 Apr; 431(6):964-70. PubMed ID: 8927516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A linear relationship between ATP degradation and fatigue during high-intensity dynamic exercise in rat skeletal muscle.
    de Haan A; Koudijs JC
    Exp Physiol; 1994 Sep; 79(5):865-8. PubMed ID: 7818871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Change in the content of ATP, creatine phosphate, inorganic phosphate and lactic acid in skeletal muscle during tetanic contraction].
    Kirzon MB; Manovtseva MA; Livanova TN
    Fiziol Zh SSSR Im I M Sechenova; 1973 Feb; 59(2):276-80. PubMed ID: 4764387
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice.
    Dahlstedt AJ; Katz A; Westerblad H
    J Physiol; 2001 Jun; 533(Pt 2):379-88. PubMed ID: 11389199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers.
    Nosek TM; Fender KY; Godt RE
    Science; 1987 Apr; 236(4798):191-3. PubMed ID: 3563496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.