BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 11821636)

  • 1. Salt intake, endothelial dysfunction, and salt-sensitive hypertension.
    Bragulat E; de la Sierra A
    J Clin Hypertens (Greenwich); 2002; 4(1):41-6. PubMed ID: 11821636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Hormonal profile and participation of nitric oxide in salt-sensitive and salt-resistant essential arterial hypertension].
    Gómez-Fernández P; Moreno VG; Cornejo M; Vargas JC; García-Barroso C; Velasco G; Almaraz M
    Nefrologia; 2000; 20(5):415-23. PubMed ID: 11100662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The blood pressure-salt sensitivity paradigm: pathophysiologically sound yet of no practical value.
    Galletti F; Strazzullo P
    Nephrol Dial Transplant; 2016 Sep; 31(9):1386-91. PubMed ID: 27521374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous nitric oxide synthesis determines sensitivity to the pressor effect of salt.
    Tolins JP; Shultz PJ
    Kidney Int; 1994 Jul; 46(1):230-6. PubMed ID: 7523754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dysfunctional renal nitric oxide synthase as a determinant of salt-sensitive hypertension: mechanisms of renal artery endothelial dysfunction and role of endothelin for vascular hypertrophy and Glomerulosclerosis.
    Barton M; Vos I; Shaw S; Boer P; D'Uscio LV; Gröne HJ; Rabelink TJ; Lattmann T; Moreau P; Lüscher TF
    J Am Soc Nephrol; 2000 May; 11(5):835-845. PubMed ID: 10770961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between hypercholesterolaemia, endothelial dysfunction and hypertension.
    Hayakawa H; Raij L
    J Hypertens; 1999 May; 17(5):611-9. PubMed ID: 10403604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial dysfunction in salt-sensitive essential hypertension.
    Bragulat E; de la Sierra A; Antonio MT; Coca A
    Hypertension; 2001 Feb; 37(2 Pt 2):444-8. PubMed ID: 11230316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High salt intake impairs vascular nitric oxide/cyclic guanosine monophosphate system in spontaneously hypertensive rats.
    Kagota S; Tamashiro A; Yamaguchi Y; Nakamura K; Kunitomo M
    J Pharmacol Exp Ther; 2002 Jul; 302(1):344-51. PubMed ID: 12065736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt sensitivity in hypertension. Renal and cardiovascular implications.
    Campese VM
    Hypertension; 1994 Apr; 23(4):531-50. PubMed ID: 8144222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of selective cyclooxygenase-2 inhibitors on endothelial function in salt-induced hypertension.
    Hermann M; Camici G; Fratton A; Hurlimann D; Tanner FC; Hellermann JP; Fiedler M; Thiery J; Neidhart M; Gay RE; Gay S; Lüscher TF; Ruschitzka F
    Circulation; 2003 Nov; 108(19):2308-11. PubMed ID: 14597594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric-oxide-mediated relaxations in salt-induced hypertension: effect of chronic beta1 -selective receptor blockade.
    Cosentino F; Bonetti S; Rehorik R; Eto M; Werner-Felmayer G; Volpe M; Lüscher TF
    J Hypertens; 2002 Mar; 20(3):421-8. PubMed ID: 11875309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Paradigms of Salt and Hypertension.
    Feng W; Dell'Italia LJ; Sanders PW
    J Am Soc Nephrol; 2017 May; 28(5):1362-1369. PubMed ID: 28220030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension.
    Rust P; Ekmekcioglu C
    Adv Exp Med Biol; 2017; 956():61-84. PubMed ID: 27757935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme oxygenase-derived carbon monoxide promotes arteriolar endothelial dysfunction and contributes to salt-induced hypertension in Dahl salt-sensitive rats.
    Teran FJ; Johnson RA; Stevenson BK; Peyton KJ; Jackson KE; Appleton SD; Durante W; Johnson FK
    Am J Physiol Regul Integr Comp Physiol; 2005 Mar; 288(3):R615-22. PubMed ID: 15528397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Downregulation of vascular soluble guanylate cyclase induced by high salt intake in spontaneously hypertensive rats.
    Kagota S; Tamashiro A; Yamaguchi Y; Sugiura R; Kuno T; Nakamura K; Kunitomo M
    Br J Pharmacol; 2001 Oct; 134(4):737-44. PubMed ID: 11606313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt-sensitive hypertension: lessons from animal models.
    Sanders PW
    Am J Kidney Dis; 1996 Nov; 28(5):775-82. PubMed ID: 9158221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial Cullin3 Mutation Impairs Nitric Oxide-Mediated Vasodilation and Promotes Salt-Induced Hypertension.
    Wu J; Fang S; Lu KT; Kumar G; Reho JJ; Brozoski DT; Otanwa AJ; Hu C; Nair AR; Wackman KK; Agbor LN; Grobe JL; Sigmund CD
    Function (Oxf); 2022; 3(3):zqac017. PubMed ID: 35493997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of high salt intake on endothelial function: reduced vascular nitric oxide in the absence of hypertension.
    Boegehold MA
    J Vasc Res; 2013; 50(6):458-67. PubMed ID: 24192502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nitric oxide in vascular hyper-responsiveness to norepinephrine in hypertensive Dahl rats.
    Nishida Y; Ding J; Zhou MS; Chen QH; Murakami H; Wu XZ; Kosaka H
    J Hypertens; 1998 Nov; 16(11):1611-8. PubMed ID: 9856361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide production decreases after salt loading but is not related to blood pressure changes or nitric oxide-mediated vascular responses.
    Dishy V; Sofowora GG; Imamura H; Nishimi Y; Xie HG; Wood AJ; Stein CM
    J Hypertens; 2003 Jan; 21(1):153-7. PubMed ID: 12544447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.