BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 11821636)

  • 21. Rostafuroxin ameliorates endothelial dysfunction and oxidative stress in resistance arteries from deoxycorticosterone acetate-salt hypertensive rats: the role of Na+K+-ATPase/ cSRC pathway.
    Wenceslau CF; Rossoni LV
    J Hypertens; 2014 Mar; 32(3):542-54. PubMed ID: 24309491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vascular consequences of dietary salt intake.
    Sanders PW
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F237-43. PubMed ID: 19339634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of angiotensin II and oxidative stress in vascular insulin resistance linked to hypertension.
    Zhou MS; Schulman IH; Raij L
    Am J Physiol Heart Circ Physiol; 2009 Mar; 296(3):H833-9. PubMed ID: 19151253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional foods for augmenting nitric oxide activity and reducing the risk for salt-induced hypertension and cardiovascular disease in Japan.
    Kurtz TW; DiCarlo SE; Pravenec M; Morris RC
    J Cardiol; 2018 Jul; 72(1):42-49. PubMed ID: 29544657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preventive Beneficial Effect of an Aqueous Extract of Phyllanthus amarus Schum. and Thonn. (Euphorbiaceae) on DOCA-Salt-Induced Hypertension, Cardiac Hypertrophy and Dysfunction, and Endothelial Dysfunction in Rats.
    Yao NA; Niazi ZR; Najmanová I; Kamagaté M; Said A; Chabert P; Auger C; Die-Kakou H; Schini-Kerth V
    J Cardiovasc Pharmacol; 2020 Jun; 75(6):573-583. PubMed ID: 32187164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endothelial dysfunction and cardiorenal injury in experimental salt-sensitive hypertension: effects of antihypertensive therapy.
    Hayakawa H; Coffee K; Raij L
    Circulation; 1997 Oct; 96(7):2407-13. PubMed ID: 9337217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bone marrow transplantation improves endothelial function in hypertensive Dahl salt-sensitive rats.
    Yu H; Shao H; Yan J; Tsoukias NM; Zhou MS
    J Am Soc Hypertens; 2012; 6(5):331-7. PubMed ID: 22995801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiovascular effects of chronic inhibition of nitric oxide synthesis and dietary salt in spontaneously hypertensive rats.
    Vaskonen T; Mervaala E; Krogerus L; Teräväinen TL; Laakso J; Karppanen H; Vapaatalo H
    Hypertens Res; 1997 Sep; 20(3):183-92. PubMed ID: 9328799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protective effect of Xin-Ji-Er-Kang on cardiovascular remodeling in high-salt induced hypertensive mice: Role ofoxidative stress and endothelial dysfunction.
    Wang XY; Huang GY; Lian FZ; Pan M; Ruan CS; Ling XX; Chen ML; Shen AZ; Gao S
    Biomed Pharmacother; 2019 Jul; 115():108937. PubMed ID: 31078040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of excessive salt intake: role of plasma sodium.
    Reuter S; Büssemaker E; Hausberg M; Pavenstädt H; Hillebrand U
    Curr Hypertens Rep; 2009 Apr; 11(2):91-7. PubMed ID: 19278597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased salt-sensitivity in endothelial nitric oxide synthase-knockout mice.
    Leonard AM; Chafe LL; Montani JP; Van Vliet BN
    Am J Hypertens; 2006 Dec; 19(12):1264-9. PubMed ID: 17161773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dietary salt reduction in hypertension--what is the evidence and why is it still controversial?
    Chrysant GS; Bakir S; Oparil S
    Prog Cardiovasc Dis; 1999; 42(1):23-38. PubMed ID: 10505491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salt-induced hemodynamic regulation mediated by nitric oxide.
    Toda N; Arakawa K
    J Hypertens; 2011 Mar; 29(3):415-24. PubMed ID: 21150639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A multi-component model of the dynamics of salt-induced hypertension in Dahl-S rats.
    McLoone VI; Ringwood JV; Van Vliet BN
    BMC Physiol; 2009 Oct; 9():20. PubMed ID: 19874603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vascular inflammation, insulin resistance, and endothelial dysfunction in salt-sensitive hypertension: role of nuclear factor kappa B activation.
    Zhou MS; Schulman IH; Raij L
    J Hypertens; 2010 Mar; 28(3):527-35. PubMed ID: 19898250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Renal functional, not morphological, abnormalities account for salt sensitivity in Dahl rats.
    Manger WM; Simchon S; Stokes MB; Reidy JJ; Kumar AR; Baer L; Gallo G; Haddy FJ
    J Hypertens; 2009 Mar; 27(3):587-98. PubMed ID: 19330919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms and consequences of salt sensitivity and dietary salt intake.
    Kanbay M; Chen Y; Solak Y; Sanders PW
    Curr Opin Nephrol Hypertens; 2011 Jan; 20(1):37-43. PubMed ID: 21088577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Salt sensitivity of blood pressure: developmental and sex-related effects.
    Wesseling S; Koeners MP; Joles JA
    Am J Clin Nutr; 2011 Dec; 94(6 Suppl):1928S-1932S. PubMed ID: 21849600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dietary salt intake, blood pressure and the kidney in hypertensive patients with non-insulin dependent diabetes mellitus.
    Campese VM; Wurgaft A; Safa M; Bianchi S
    J Nephrol; 1998; 11(6):289-95. PubMed ID: 10048494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of oxidative stress-induced increase in salt sensitivity and development of hypertension in Sprague-Dawley rats.
    Banday AA; Muhammad AB; Fazili FR; Lokhandwala M
    Hypertension; 2007 Mar; 49(3):664-71. PubMed ID: 17200436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.