BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 11821636)

  • 41. Secondary endothelial dysfunction: hypertension and heart failure.
    Boulanger CM
    J Mol Cell Cardiol; 1999 Jan; 31(1):39-49. PubMed ID: 10072714
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of high salt independent of blood pressure on PRMT/ADMA/DDAH pathway in the aorta of Dahl salt-sensitive rats.
    Cao Y; Mu JJ; Fang Y; Yuan ZY; Liu FQ
    Int J Mol Sci; 2013 Apr; 14(4):8062-72. PubMed ID: 23584024
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential regulation of natriuresis by 20-hydroxyeicosatetraenoic Acid in human salt-sensitive versus salt-resistant hypertension.
    Laffer CL; Laniado-Schwartzman M; Wang MH; Nasjletti A; Elijovich F
    Circulation; 2003 Feb; 107(4):574-8. PubMed ID: 12566369
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increased levels of atherosclerosis markers in salt-sensitive hypertension.
    Larrousse M; Bragulat E; Segarra M; Sierra C; Coca A; de La Sierra A
    Am J Hypertens; 2006 Jan; 19(1):87-93. PubMed ID: 16461197
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impairment of endothelial function in salt-sensitive hypertension in humans.
    Miyoshi A; Suzuki H; Fujiwara M; Masai M; Iwasaki T
    Am J Hypertens; 1997 Oct; 10(10 Pt 1):1083-90. PubMed ID: 9370377
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vascular endothelial growth factor receptor inhibitor enhances dietary salt-induced hypertension in Sprague-Dawley rats.
    Gu JW; Manning RD; Young E; Shparago M; Sartin B; Bailey AP
    Am J Physiol Regul Integr Comp Physiol; 2009 Jul; 297(1):R142-8. PubMed ID: 19420288
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.
    Gordish KL; Kassem KM; Ortiz PA; Beierwaltes WH
    Physiol Rep; 2017 Apr; 5(7):. PubMed ID: 28408634
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Upregulation of caveolin-1 contributes to aggravated high-salt diet-induced endothelial dysfunction and hypertension in type 1 diabetic rats.
    Li X; Xing W; Wang Y; Mi C; Zhang Z; Ma H; Zhang H; Gao F
    Life Sci; 2014 Sep; 113(1-2):31-9. PubMed ID: 25086377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for Prohypertensive, Proinflammatory Effect of Interleukin-10 During Chronic High Salt Intake in the Condition of Elevated Angiotensin II Level.
    Singh P; Castillo A; Islam MT; Majid DSA
    Hypertension; 2017 Oct; 70(4):839-845. PubMed ID: 28847894
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A mechanism for salt-sensitive hypertension: abnormal dietary sodium-mediated vascular response to angiotensin-II.
    Chamarthi B; Williams JS; Williams GH
    J Hypertens; 2010 May; 28(5):1020-6. PubMed ID: 20216091
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of abnormal nitric oxide systems in salt-sensitive hypertension.
    Manning RD; Hu L; Tan DY; Meng S
    Am J Hypertens; 2001 Jun; 14(6 Pt 2):68S-73S. PubMed ID: 11411768
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nitric oxide synthase isotype expression in salt-sensitive and salt-resistant Dahl rats.
    Ni Z; Oveisi F; Vaziri ND
    Hypertension; 1999 Oct; 34(4 Pt 1):552-7. PubMed ID: 10523325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Role of Rho in Salt-Sensitive Hypertension.
    Kawarazaki W; Fujita T
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of natriuretic factors increases blood pressure in rats.
    Banday AA; Lokhandwala MF
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F397-402. PubMed ID: 19474184
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanisms of blood pressure salt sensitivity: new insights from mathematical modeling.
    Clemmer JS; Pruett WA; Coleman TG; Hall JE; Hester RL
    Am J Physiol Regul Integr Comp Physiol; 2017 Apr; 312(4):R451-R466. PubMed ID: 27974315
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Participation of nitric oxide in different models of experimental hypertension.
    Török J
    Physiol Res; 2008; 57(6):813-825. PubMed ID: 19154086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension.
    Kurtz TW; DiCarlo SE; Pravenec M; Morris RC
    Curr Opin Nephrol Hypertens; 2018 Mar; 27(2):83-92. PubMed ID: 29278541
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lowering of blood pressure improves endothelial dysfunction by increase of nitric oxide production in hypertensive rats.
    Hatta T; Nakata T; Harada S; Kiyama M; Moriguchi J; Morimoto S; Itoh H; Sasaki S; Takeda K; Nakagawa M
    Hypertens Res; 2002 May; 25(3):455-60. PubMed ID: 12135326
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Excessive salt or cholesterol intake alters the balance among endothelium-derived factors released from renal arteries in spontaneously hypertensive rats.
    Kagota S; Tamashiro A; Yamaguchi Y; Nakamura K; Kunitomo M
    J Cardiovasc Pharmacol; 1999 Oct; 34(4):533-9. PubMed ID: 10511128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Maternal salt and fat intake causes hypertension and sustained endothelial dysfunction in fetal, weanling and adult male resistance vessels.
    Gray C; Harrison CJ; Segovia SA; Reynolds CM; Vickers MH
    Sci Rep; 2015 May; 5():9753. PubMed ID: 25953742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.