These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 11821636)

  • 61. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension.
    Taddei S; Virdis A; Ghiadoni L; Magagna A; Salvetti A
    Circulation; 1998 Jun; 97(22):2222-9. PubMed ID: 9631871
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Norepinephrine-evoked salt-sensitive hypertension requires impaired renal sodium chloride cotransporter activity in Sprague-Dawley rats.
    Walsh KR; Kuwabara JT; Shim JW; Wainford RD
    Am J Physiol Regul Integr Comp Physiol; 2016 Jan; 310(2):R115-24. PubMed ID: 26608659
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Vascular endothelium and nitric oxide in childhood hypertension.
    Goonasekera CD; Dillon MJ
    Pediatr Nephrol; 1998 Oct; 12(8):676-89. PubMed ID: 9811394
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Overexpression of HIF prolyl-hydoxylase-2 transgene in the renal medulla induced a salt sensitive hypertension.
    Zhu Q; Liu M; Han WQ; Li PL; Wang Z; Li N
    J Cell Mol Med; 2012 Nov; 16(11):2701-7. PubMed ID: 22686466
    [TBL] [Abstract][Full Text] [Related]  

  • 65. PGC-1α overexpression suppresses blood pressure elevation in DOCA-salt hypertensive mice.
    Zhao Q; Zhang J; Wang H
    Biosci Rep; 2015 May; 35(3):. PubMed ID: 26182379
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Impaired nitric oxide- and endothelium-derived hyperpolarizing factor-dependent dilation of renal afferent arteriole in Dahl salt-sensitive rats.
    Ozawa Y; Hayashi K; Kanda T; Homma K; Takamatsu I; Tatematsu S; Yoshioka K; Kumagai H; Wakino S; Saruta T
    Nephrology (Carlton); 2004 Oct; 9(5):272-7. PubMed ID: 15504139
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Endothelial dysfunction in hypertension. A critical evaluation.
    Van Zwieten PA
    Blood Press Suppl; 1997; 2():67-70. PubMed ID: 9495630
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Epicatechin: endothelial function and blood pressure.
    Jiménez R; Duarte J; Perez-Vizcaino F
    J Agric Food Chem; 2012 Sep; 60(36):8823-30. PubMed ID: 22440087
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Raloxifene improves endothelial dysfunction in hypertension by reduced oxidative stress and enhanced nitric oxide production.
    Wassmann S; Laufs U; Stamenkovic D; Linz W; Stasch JP; Ahlbory K; Rösen R; Böhm M; Nickenig G
    Circulation; 2002 Apr; 105(17):2083-91. PubMed ID: 11980689
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Role of nitric oxide in the control of renal function and salt sensitivity.
    Zou AP; Cowley AW
    Curr Hypertens Rep; 1999; 1(2):178-86. PubMed ID: 10981063
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Low-Dose Aspirin Treatment Attenuates Male Rat Salt-Sensitive Hypertension via Platelet Cyclooxygenase 1 and Complement Cascade Pathway.
    Jiang X; Liu X; Liu X; Wu X; Jose PA; Liu M; Yang Z
    J Am Heart Assoc; 2020 Jan; 9(1):e013470. PubMed ID: 31852420
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity.
    Kurtz TW; DiCarlo SE; Pravenec M; Morris RC
    Hypertens Res; 2019 Jan; 42(1):6-18. PubMed ID: 30390036
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Amelioration of renal injury and oxidative stress by the nNOS inhibitor L-VNIO in the salt-sensitive mRen2.Lewis congenic rat.
    Yamaleyeva LM; Lindsey SH; Varagic J; Zhang LL; Gallagher PE; Chen AF; Chappell MC
    J Cardiovasc Pharmacol; 2012 Jun; 59(6):529-38. PubMed ID: 22370956
    [TBL] [Abstract][Full Text] [Related]  

  • 74. POSSIBLE MECHANISM OF DEVELOPMENT OF SALT SENSITIVE ESSENTIAL HYPERTENSION.
    Kantaria N; Pantsulaia I; Andronikashvili I; Simonia G
    Georgian Med News; 2016 Sep; (258):28-32. PubMed ID: 27770523
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rat chromosome 19 transfer from SHR ameliorates hypertension, salt-sensitivity, cardiovascular and renal organ damage in salt-sensitive Dahl rats.
    Wendt N; Schulz A; Siegel AK; Weiss J; Wehland M; Sietmann A; Kossmehl P; Grimm D; Stoll M; Kreutz R
    J Hypertens; 2007 Jan; 25(1):95-102. PubMed ID: 17143179
    [TBL] [Abstract][Full Text] [Related]  

  • 76. ET(A) receptor blockade prevents increased tissue endothelin-1, vascular hypertrophy, and endothelial dysfunction in salt-sensitive hypertension.
    Barton M; d'Uscio LV; Shaw S; Meyer P; Moreau P; Lüscher TF
    Hypertension; 1998 Jan; 31(1 Pt 2):499-504. PubMed ID: 9453352
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Role of endothelium and nitric oxide in experimental hypertension.
    Vapaatalo H; Mervaala E; Nurminen ML
    Physiol Res; 2000; 49(1):1-10. PubMed ID: 10805399
    [TBL] [Abstract][Full Text] [Related]  

  • 78. In salt-sensitive hypertension, increased superoxide production is linked to functional upregulation of angiotensin II.
    Zhou MS; Adam AG; Jaimes EA; Raij L
    Hypertension; 2003 Nov; 42(5):945-51. PubMed ID: 12975388
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A maternal high salt diet disturbs cardiac and vascular function of offspring.
    Maruyama K; Kagota S; Van Vliet BN; Wakuda H; Shinozuka K
    Life Sci; 2015 Sep; 136():42-51. PubMed ID: 26141995
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Salt-sensitive hypertension: mechanisms and effects of dietary and other lifestyle factors.
    Pilic L; Pedlar CR; Mavrommatis Y
    Nutr Rev; 2016 Oct; 74(10):645-58. PubMed ID: 27566757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.