These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 11821636)

  • 81. Salt-sensitive hypertension: mechanisms and effects of dietary and other lifestyle factors.
    Pilic L; Pedlar CR; Mavrommatis Y
    Nutr Rev; 2016 Oct; 74(10):645-58. PubMed ID: 27566757
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Increased salt sensitivity induced by sensory denervation: role of superoxide.
    Song WZ; Chen AF; Wang DH
    Acta Pharmacol Sin; 2004 Dec; 25(12):1626-32. PubMed ID: 15569407
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Influence of enalapril on the endothelial function of DOCA-salt hypertensive rats.
    Nunes VW; Fortes ZB; Nigro D; Carvalho MH; Zorn TM; Scivoletto R
    Gen Pharmacol; 2000 Feb; 34(2):117-25. PubMed ID: 10974419
    [TBL] [Abstract][Full Text] [Related]  

  • 84. An update on the relationship between the kidney, salt and hypertension.
    Mayer G
    Wien Med Wochenschr; 2008; 158(13-14):365-9. PubMed ID: 18677586
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Genes involved in vasoconstriction and vasodilation system affect salt-sensitive hypertension.
    Citterio L; Simonini M; Zagato L; Salvi E; Delli Carpini S; Lanzani C; Messaggio E; Casamassima N; Frau F; D'Avila F; Cusi D; Barlassina C; Manunta P
    PLoS One; 2011 May; 6(5):e19620. PubMed ID: 21573014
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Decreased endothelium-dependent NO-cGMP vascular relaxation and hypertension in growth-restricted rats on a high-salt diet.
    Payne JA; Alexander BT; Khalil RA
    Hypertension; 2004 Feb; 43(2):420-7. PubMed ID: 14707161
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Heterogeneous responses to changes in dietary salt intake: the salt-sensitivity paradigm.
    Luft FC; Weinberger MH
    Am J Clin Nutr; 1997 Feb; 65(2 Suppl):612S-617S. PubMed ID: 9022556
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Endothelium-derived vasoactive factors in hypertension: nitric oxide and endothelin.
    Nava E; Lüscher TF
    J Hypertens Suppl; 1995 Aug; 13(2):S39-48. PubMed ID: 8576787
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Eplerenone prevents salt-induced vascular remodeling and cardiac fibrosis in stroke-prone spontaneously hypertensive rats.
    Endemann DH; Touyz RM; Iglarz M; Savoia C; Schiffrin EL
    Hypertension; 2004 Jun; 43(6):1252-7. PubMed ID: 15117913
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Genetic and nongenetic determinants of salt sensitivity and blood pressure.
    Cowley AW
    Am J Clin Nutr; 1997 Feb; 65(2 Suppl):587S-593S. PubMed ID: 9022553
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Lack of blood pressure salt-sensitivity supports a preglomerular site of action of nitric oxide in Type I diabetic rats.
    Brands MW; Bell TD; Fleming C; Labazi H; Sturgis LC
    Clin Exp Pharmacol Physiol; 2007; 34(5-6):475-9. PubMed ID: 17439418
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Association between salt sensitivity and target organ damage in essential hypertension.
    Bihorac A; Tezcan H; Ozener C; Oktay A; Akoglu E
    Am J Hypertens; 2000 Aug; 13(8):864-72. PubMed ID: 10950394
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Chronic treatment with the CA2+ channel inhibitor RO 40-5967 potentiates endothelium-dependent relaxations in the aorta of the hypertensive salt sensitive Dahl rat.
    Boulanger CM; Desta B; Clozel JP; Vanhoutte PM
    Blood Press; 1994 May; 3(3):193-6. PubMed ID: 8069408
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Salt sensitivity and circadian rhythm of blood pressure: the keys to connect CKD with cardiovascular events.
    Kimura G; Dohi Y; Fukuda M
    Hypertens Res; 2010 Jun; 33(6):515-20. PubMed ID: 20379191
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Inhibition of prolyl hydroxylase domain-containing protein on hypertension/renal injury induced by high salt diet and nitric oxide withdrawal.
    Dallatu MK; Choi M; Oyekan AO
    J Hypertens; 2013 Oct; 31(10):2043-9. PubMed ID: 23811999
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Age-dependent salt hypertension in Dahl rats: fifty years of research.
    Zicha J; Dobešová Z; Vokurková M; Rauchová H; Hojná S; Kadlecová M; Behuliak M; Vaněčková I; Kuneš J
    Physiol Res; 2012; 61(Suppl 1):S35-S87. PubMed ID: 22827876
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Marinobufagenin and cyclic strain may activate endothelial NADPH oxidase, contributing to the adverse impact of salty diets on vascular and cerebral health.
    McCarty MF
    Med Hypotheses; 2012 Feb; 78(2):191-6. PubMed ID: 21968275
    [TBL] [Abstract][Full Text] [Related]  

  • 98. TGF and nitric oxide: effects of salt intake and salt-sensitive hypertension.
    Wilcox CS; Welch WJ
    Kidney Int Suppl; 1996 Jun; 55():S9-13. PubMed ID: 8743503
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Role of oxidative stress and nitric oxide in regulation of spontaneous tone in aorta of DOCA-salt hypertensive rats.
    Ghosh M; Wang HD; McNeill JR
    Br J Pharmacol; 2004 Feb; 141(4):562-73. PubMed ID: 14744820
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Indapamide improves flow-induced dilation in hypertensive rats with a high salt intake.
    Matrougui K; Lévy BI; Schiavi P; Guez D; Henrion D
    J Hypertens; 1998 Oct; 16(10):1485-90. PubMed ID: 9814620
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.