These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11822595)

  • 1. Differential theory of gratings made of anisotropic materials.
    Watanabe K; Petit R; Nevière M
    J Opt Soc Am A Opt Image Sci Vis; 2002 Feb; 19(2):325-34. PubMed ID: 11822595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical integration schemes used on the differential theory for anisotropic gratings.
    Watanabe K
    J Opt Soc Am A Opt Image Sci Vis; 2002 Nov; 19(11):2245-52. PubMed ID: 12413126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential theory: application to highly conducting gratings.
    Popov E; Chernov B; Nevière M; Bonod N
    J Opt Soc Am A Opt Image Sci Vis; 2004 Feb; 21(2):199-206. PubMed ID: 14870713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study on the spectroscopic ellipsometry of lamellar gratings made of lossless dielectric materials.
    Watanabe K; Pistora J; Foldyna M; Postava K; Vlcek J
    J Opt Soc Am A Opt Image Sci Vis; 2005 Apr; 22(4):745-51. PubMed ID: 15839282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grating theory: new equations in Fourier space leading to fast converging results for TM polarization.
    Popov E; Nevière M
    J Opt Soc Am A Opt Image Sci Vis; 2000 Oct; 17(10):1773-84. PubMed ID: 11028525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the differential theory of lamellar gratings made of highly conducting materials.
    Watanabe K
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):69-72. PubMed ID: 16478061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the numerical artifacts in differential analysis of highly conducting gratings.
    Khavasi A; Mehrany K; Jazayeri AH
    Opt Lett; 2008 Jan; 33(2):159-61. PubMed ID: 18197225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast convergent Fourier modal method for the analysis of periodic arrays of graphene ribbons.
    Khavasi A
    Opt Lett; 2013 Aug; 38(16):3009-12. PubMed ID: 24104634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Staircase approximation validity for arbitrary-shaped gratings.
    Popov E; Nevière M; Gralak B; Tayeb G
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jan; 19(1):33-42. PubMed ID: 11778730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media.
    Popov E; Nevière M
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2886-94. PubMed ID: 11688878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential theory for diffraction gratings: a new formulation for TM polarization with rapid convergence.
    Popov E; Nevière M
    Opt Lett; 2000 May; 25(9):598-600. PubMed ID: 18064122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffraction theory: application of the fast Fourier factorization to cylindrical devices with arbitrary cross section lighted in conical mounting.
    Boyer P; Popov E; Nevière M; Renversez G
    J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1146-58. PubMed ID: 16642193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electromagnetic scattering of two-dimensional surface-relief dielectric gratings.
    Han ST; Tsao YL; Walser RM; Becker MF
    Appl Opt; 1992 May; 31(13):2343-52. PubMed ID: 20720899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modal method for the 2D wave propagation in heterogeneous anisotropic media.
    Maurel A; Mercier JF; Félix S
    J Opt Soc Am A Opt Image Sci Vis; 2015 May; 32(5):979-90. PubMed ID: 26366924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field singularities at lossless metal-dielectric arbitrary-angle edges and their ramifications to the numerical modeling of gratings.
    Li L
    J Opt Soc Am A Opt Image Sci Vis; 2012 Apr; 29(4):593-604. PubMed ID: 22472839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective medium approximation of anisotropic lamellar nanogratings based on Fourier factorization.
    Foldyna M; Ossikovski R; De Martino A; Drevillon B; Postava K; Ciprian D; Pistora J; Watanabe K
    Opt Express; 2006 Apr; 14(8):3114-28. PubMed ID: 19516453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal vector method for convergence improvement using the RCWA for crossed gratings.
    Schuster T; Ruoff J; Kerwien N; Rafler S; Osten W
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2880-90. PubMed ID: 17767260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field singularities at lossless metal-dielectric right-angle edges and their ramifications to the numerical modeling of gratings.
    Li L; Granet G
    J Opt Soc Am A Opt Image Sci Vis; 2011 May; 28(5):738-46. PubMed ID: 21532683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rigorous 3-D coupled wave diffraction analysis of multiple superposed gratings in anisotropic media.
    Glytsis EN; Gaylord TK
    Appl Opt; 1989 Jun; 28(12):2401-21. PubMed ID: 20555529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarized optical scattering by inhomogeneities and surface roughness in an anisotropic thin film.
    Germer TA; Sharma KA; Brown TG; Oliver JB
    J Opt Soc Am A Opt Image Sci Vis; 2017 Nov; 34(11):1974-1984. PubMed ID: 29091646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.