These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11822598)

  • 1. Theory of singular-phase reconstruction for an optical speckle field in the turbulent atmosphere.
    Aksenov VP; Tikhomirova OV
    J Opt Soc Am A Opt Image Sci Vis; 2002 Feb; 19(2):345-55. PubMed ID: 11822598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential and vortex features of optical speckle fields and visualization of wave-front singularities.
    Aksenov V; Banakh V; Tikhomirova O
    Appl Opt; 1998 Jul; 37(21):4536-40. PubMed ID: 18285906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of phase mode components in terms of local wave-front slopes: an analytical approach.
    Acosta E; Bará S; Rama MA; Ríos S
    Opt Lett; 1995 May; 20(10):1083-5. PubMed ID: 19859432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the performance of a shearing interferometer in strong scintillation in the absence of additive measurement noise.
    Barchers JD; Fried DL; Link DJ
    Appl Opt; 2002 Jun; 41(18):3674-84. PubMed ID: 12078695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave-front sensing and deformable-mirror control in strong scintillation.
    Roggemann MC; Koivunen AC
    J Opt Soc Am A Opt Image Sci Vis; 2000 May; 17(5):911-9. PubMed ID: 10795640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.
    Murphy K; Burke D; Devaney N; Dainty C
    Opt Express; 2010 Jul; 18(15):15448-60. PubMed ID: 20720924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical representation of the phase and its mode components reconstructed according to the wave-front slopes.
    Aksenov VP; Isaev YN
    Opt Lett; 1992 Sep; 17(17):1180-2. PubMed ID: 19798126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent image synthesis from wave-front sensor measurements of a nonimaged laser speckle field: a laboratory demonstrations.
    Gonglewski JD; Idell PS; Voelz DG; Dayton DC; Spielbusch BK; Pierson RE
    Opt Lett; 1991 Dec; 16(23):1893-5. PubMed ID: 19784174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor.
    Welsh BM; Ellerbroek BL; Roggemann MC; Pennington TL
    Appl Opt; 1995 Jul; 34(21):4186-95. PubMed ID: 21052244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase unwrapping for noisy phase maps using rotational compensator with virtual singular points.
    Tomioka S; Heshmat S; Miyamoto N; Nishiyama S
    Appl Opt; 2010 Sep; 49(25):4735-45. PubMed ID: 20820215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional wave-front reconstruction from lateral shearing interferograms.
    Liang P; Ding J; Jin Z; Guo CS; Wang HT
    Opt Express; 2006 Jan; 14(2):625-34. PubMed ID: 19503379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extension of the modal wave-front reconstruction algorithm to non-uniform illumination.
    Ma X; Mu J; Rao C; Yang J; Rao X; Tian Y
    Opt Express; 2014 Jun; 22(13):15589-98. PubMed ID: 24977817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-crystal Hartmann wave-front scanner.
    Olivier S; Laude V; Huignard JP
    Appl Opt; 2000 Aug; 39(22):3838-46. PubMed ID: 18349960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the performance of Hartmann sensors in strong scintillation.
    Barchers JD; Fried DL; Link DJ
    Appl Opt; 2002 Feb; 41(6):1012-21. PubMed ID: 11900119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction and assessment of the least-squares and slope discrepancy components of the phase.
    Tyler GA
    J Opt Soc Am A Opt Image Sci Vis; 2000 Oct; 17(10):1828-39. PubMed ID: 11028531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor.
    Starikov FA; Kochemasov GG; Kulikov SM; Manachinsky AN; Maslov NV; Ogorodnikov AV; Sukharev SA; Aksenov VP; Izmailov IV; Kanev FY; Atuchin VV; Soldatenkov IS
    Opt Lett; 2007 Aug; 32(16):2291-3. PubMed ID: 17700762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-deformable-mirror concept for correcting scintillation effects in laser beam projection through the turbulent atmosphere.
    Roggemann MC; Lee DJ
    Appl Opt; 1998 Jul; 37(21):4577-85. PubMed ID: 18285913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave-front reconstruction with a shack-hartmann sensor with an iterative spline fitting method.
    Groening S; Sick B; Donner K; Pfund J; Lindlein N; Schwider J
    Appl Opt; 2000 Feb; 39(4):561-7. PubMed ID: 18337926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Branch-point reconstruction in laser beam projection through turbulence with finite-degree-of-freedom phase-only wave-front correction.
    Roggemann MC; Koivunen AC
    J Opt Soc Am A Opt Image Sci Vis; 2000 Jan; 17(1):53-62. PubMed ID: 10641838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor.
    Liang J; Grimm B; Goelz S; Bille JF
    J Opt Soc Am A Opt Image Sci Vis; 1994 Jul; 11(7):1949-57. PubMed ID: 8071736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.