BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 11822725)

  • 21. Livestock grazing and biodiversity: Effects on CO
    Rybchak O; du Toit J; Delorme JP; Jüdt JK; Bieri M; Midgley G; Mukwashi K; Thau C; Feig G; Lucas-Moffat A; Brümmer C
    Sci Total Environ; 2024 Feb; 910():168517. PubMed ID: 37981131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Grazing decreases net ecosystem carbon exchange by decreasing shrub and semi-shrub biomass in a desert steppe.
    Ju X; Wang B; Wu L; Zhang X; Wu Q; Han G
    Ecol Evol; 2024 Jun; 14(6):e11528. PubMed ID: 38932943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of long-term grazing disturbance on the belowground storage of organic carbon in the Patagonian Monte, Argentina.
    Larreguy C; Carrera AL; Bertiller MB
    J Environ Manage; 2014 Feb; 134():47-55. PubMed ID: 24463848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effects of long-term grazing exclosures on range plants in the Central Anatolian Region of Turkey.
    Firincioğlu HK; Seefeldt SS; Sahin B
    Environ Manage; 2007 Mar; 39(3):326-37. PubMed ID: 17203339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aboveground productivity and root-shoot allocation differ between native and introduced grass species.
    Wilsey BJ; Polley HW
    Oecologia; 2006 Nov; 150(2):300-9. PubMed ID: 16927104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Grazing decreased soil organic carbon by decreasing aboveground biomass in a desert steppe in Inner Mongolia.
    Wang Y; Wang Z; Li H; Shen T; Zhang X; Li J; Han G
    J Environ Manage; 2023 Dec; 347():119112. PubMed ID: 37778075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Underlying mechanism on source-sink carbon balance of grazed perennial grass during regrowth: Insights into optimal grazing regimes of restoration of degraded grasslands in a temperate steppe.
    Zhang Z; Gong J; Li X; Ding Y; Wang B; Shi J; Liu M; Yang B
    J Environ Manage; 2021 Jan; 277():111439. PubMed ID: 33035939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The positive relationships between plant coverage, species richness, and aboveground biomass are ubiquitous across plant growth forms in semi-steppe rangelands.
    Sanaei A; Ali A; Chahouki MAZ
    J Environ Manage; 2018 Jan; 205():308-318. PubMed ID: 29031134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of cattle grazing a species-rich mountain pasture under different stocking rates on the dynamics of diet selection and sward structure.
    Dumont B; Garel JP; Ginane C; Decuq F; Farruggia A; Pradel P; Rigolot C; Petit M
    Animal; 2007 Aug; 1(7):1042-52. PubMed ID: 22444807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils.
    Mueller P; Granse D; Nolte S; Do HT; Weingartner M; Hoth S; Jensen K
    Ecol Appl; 2017 Jul; 27(5):1435-1450. PubMed ID: 28317257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does resource availability, resource heterogeneity or species turnover mediate changes in plant species richness in grazed grasslands?
    Bakker C; Blair JM; Knapp AK
    Oecologia; 2003 Nov; 137(3):385-91. PubMed ID: 12955488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soil nitrate leaching under grazed cool-season grass pastures of the North Central US.
    Jackson RD
    J Sci Food Agric; 2020 Dec; 100(15):5307-5312. PubMed ID: 32520402
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soil carbon and nitrogen storage in response to fire in a temperate mixed-grass savanna.
    Dai X; Boutton TW; Hailemichael M; Ansley RJ; Jessup KE
    J Environ Qual; 2006; 35(4):1620-8. PubMed ID: 16825482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of grazing exclusion on the grassland ecosystems of mountain meadows and temperate typical steppe in a mountain-basin system in Central Asia's arid regions, China.
    Bi X; Li B; Fu Q; Fan Y; Ma L; Yang Z; Nan B; Dai X; Zhang X
    Sci Total Environ; 2018 Jul; 630():254-263. PubMed ID: 29477823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimulation of soil nitrification and denitrification by grazing in grasslands: do changes in plant species composition matter?
    Le Roux X; Bardy M; Loiseau P; Louault F
    Oecologia; 2003 Nov; 137(3):417-25. PubMed ID: 12955489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Response of vegetation and soil carbon and nitrogen storage to grazing intensity in semi-arid grasslands in the agro-pastoral zone of northern china.
    Xu MY; Xie F; Wang K
    PLoS One; 2014; 9(5):e96604. PubMed ID: 24819162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: a meta-analysis.
    Zhou G; Zhou X; He Y; Shao J; Hu Z; Liu R; Zhou H; Hosseinibai S
    Glob Chang Biol; 2017 Mar; 23(3):1167-1179. PubMed ID: 27416555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impacts of Rotational Grazing on Soil Carbon in Native Grass-Based Pastures in Southern Australia.
    Sanderman J; Reseigh J; Wurst M; Young MA; Austin J
    PLoS One; 2015; 10(8):e0136157. PubMed ID: 26284658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Managing Semi-Arid Rangelands for Carbon Storage: Grazing and Woody Encroachment Effects on Soil Carbon and Nitrogen.
    Yusuf HM; Treydte AC; Sauerborn J
    PLoS One; 2015; 10(10):e0109063. PubMed ID: 26461478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon sequestration and soil restoration potential of grazing lands under exclosure management in a semi-arid environment of northern Ethiopia.
    Gebregergs T; Tessema ZK; Solomon N; Birhane E
    Ecol Evol; 2019 Jun; 9(11):6468-6479. PubMed ID: 31236236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.