These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 11822834)
1. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Chen YL; Tang TY; Cheng KJ Can J Microbiol; 2001 Dec; 47(12):1088-94. PubMed ID: 11822834 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a Neocallimastix patriciarum xylanase gene and its product. Liu JH; Selinger BL; Tsai CF; Cheng KJ Can J Microbiol; 1999 Nov; 45(11):970-4. PubMed ID: 10588045 [TBL] [Abstract][Full Text] [Related]
3. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. Bai W; Cao Y; Liu J; Wang Q; Jia Z BMC Biotechnol; 2016 Nov; 16(1):77. PubMed ID: 27825339 [TBL] [Abstract][Full Text] [Related]
4. Molecular cloning and characterization of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum. Pai CK; Wu ZY; Chen MJ; Zeng YF; Chen JW; Duan CH; Li ML; Liu JR Appl Microbiol Biotechnol; 2010 Feb; 85(5):1451-62. PubMed ID: 19690850 [TBL] [Abstract][Full Text] [Related]
5. Structural analysis of a glycoside hydrolase family 11 xylanase from Neocallimastix patriciarum: insights into the molecular basis of a thermophilic enzyme. Cheng YS; Chen CC; Huang CH; Ko TP; Luo W; Huang JW; Liu JR; Guo RT J Biol Chem; 2014 Apr; 289(16):11020-11028. PubMed ID: 24619408 [TBL] [Abstract][Full Text] [Related]
6. Enhancing thermal tolerance of a fungal GH11 xylanase guided by B-factor analysis and multiple sequence alignment. Han N; Ma Y; Mu Y; Tang X; Li J; Huang Z Enzyme Microb Technol; 2019 Dec; 131():109422. PubMed ID: 31615659 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of Neocallimastix patriciarum xylanase on artificial oil bodies and statistical optimization of enzyme activity. Hung YJ; Peng CC; Tzen JT; Chen MJ; Liu JR Bioresour Technol; 2008 Dec; 99(18):8662-6. PubMed ID: 18495476 [TBL] [Abstract][Full Text] [Related]
8. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme. Ruller R; Alponti J; Deliberto LA; Zanphorlin LM; Machado CB; Ward RJ Protein Eng Des Sel; 2014 Aug; 27(8):255-62. PubMed ID: 25096197 [TBL] [Abstract][Full Text] [Related]
9. Potential hydrophobic interaction between two cysteines in interior hydrophobic region improves thermostability of a family 11 xylanase from Neocallimastix patriciarum. You C; Huang Q; Xue H; Xu Y; Lu H Biotechnol Bioeng; 2010 Apr; 105(5):861-70. PubMed ID: 19998284 [TBL] [Abstract][Full Text] [Related]
10. Modification of a xylanase cDNA isolated from an anaerobic fungus Neocallimastix patriciarum for high-level expression in Escherichia coli. Xue GP; Denman SE; Glassop D; Johnson JS; Dierens LM; Gobius KS; Aylward JH J Biotechnol; 1995 Jan; 38(3):269-77. PubMed ID: 7765876 [TBL] [Abstract][Full Text] [Related]
11. Expression of a modified Neocallimastix patriciarum xylanase in Butyrivibrio fibrisolvens digests more fibre but cannot effectively compete with highly fibrolytic bacteria in the rumen. Krause DO; Bunch RJ; Dalrymple BD; Gobius KS; Smith WJ; Xue GP; McSweeney CS J Appl Microbiol; 2001 Mar; 90(3):388-96. PubMed ID: 11298234 [TBL] [Abstract][Full Text] [Related]
12. Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design. Bu Y; Cui Y; Peng Y; Hu M; Tian Y; Tao Y; Wu B Appl Microbiol Biotechnol; 2018 Apr; 102(8):3675-3685. PubMed ID: 29500753 [TBL] [Abstract][Full Text] [Related]
14. An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Cybinski DH; Layton I; Lowry JB; Dalrymple BP Appl Microbiol Biotechnol; 1999 Aug; 52(2):221-5. PubMed ID: 10499262 [TBL] [Abstract][Full Text] [Related]
15. Cloning of a rumen fungal xylanase gene and purification of the recombinant enzyme via artificial oil bodies. Liu JR; Duan CH; Zhao X; Tzen JT; Cheng KJ; Pai CK Appl Microbiol Biotechnol; 2008 May; 79(2):225-33. PubMed ID: 18415096 [TBL] [Abstract][Full Text] [Related]
16. Transformation and expression of an anaerobic fungal xylanase in several strains of the rumen bacterium Butyrivibrio fibrisolvens. Gobius KS; Xue GP; Aylward JH; Dalrymple BP; Swadling YJ; McSweeney CS; Krause DO J Appl Microbiol; 2002; 93(1):122-33. PubMed ID: 12067381 [TBL] [Abstract][Full Text] [Related]
17. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Fushinobu S; Ito K; Konno M; Wakagi T; Matsuzawa H Protein Eng; 1998 Dec; 11(12):1121-8. PubMed ID: 9930661 [TBL] [Abstract][Full Text] [Related]
18. Improving the Thermostability of a Fungal GH11 Xylanase via Fusion of a Submodule (C2) from Hyperthermophilic CBM9_1-2. Miao H; Ma Y; Zhe Y; Tang X; Wu Q; Huang Z; Han N Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008888 [TBL] [Abstract][Full Text] [Related]
19. Characterization of alkaline thermoactive cellulase-free xylanases from alkalophilic Bacillus (NCL 87-6-10). Balakrishnan H; Kamal Kumar B; Dutta-Choudhury M; Rele MV J Biochem Mol Biol Biophys; 2002 Oct; 6(5):325-34. PubMed ID: 12385968 [TBL] [Abstract][Full Text] [Related]
20. Xylanases of marine fungi of potential use for biobleaching of paper pulp. Raghukumar C; Muraleedharan U; Gaud VR; Mishra R J Ind Microbiol Biotechnol; 2004 Oct; 31(9):433-41. PubMed ID: 15372306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]