These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11822896)

  • 21. Monoxenic production of the entomopathogenic nematode Steinernema carpocapsae using culture media containing agave juice (aguamiel) from Mexican maguey-pulquero (Agave spp). Effects of the contents of nitrogen, carbohydrates and fat on infective juvenile production.
    Islas-López MA; Sanjuan-Galindo R; Rodríguez-Hernández AI; Chavarría-Hernández N
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):91-7. PubMed ID: 15650850
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Effects of Nutrient Concentration, Addition of Thickeners, and Agitation Speed on Liquid Fermentation of Steinernema feltiae.
    Leite LG; Shapiro-Ilan DI; Hazir S; Jackson MA
    J Nematol; 2016 Jun; 48(2):126-33. PubMed ID: 27418706
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation.
    Wong SS; Teng TT; Ahmad AL; Zuhairi A; Najafpour G
    J Hazard Mater; 2006 Jul; 135(1-3):378-88. PubMed ID: 16431022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of a contraction flow field on hydrodynamic damage to entomopathogenic nematodes-A biological pest control agent.
    Fife JP; Derksen RC; Ozkan HE; Grewal PS; Chalmers JJ; Krause CR
    Biotechnol Bioeng; 2004 Apr; 86(1):96-107. PubMed ID: 15007846
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Pieterse A; Haukeland S; Půža V; Ross JL; Malan AP
    J Helminthol; 2022 Nov; 96():e84. PubMed ID: 36377341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Challenges for mass production of nematodes in submerged culture.
    de la Torre M
    Biotechnol Adv; 2003 Aug; 21(5):407-16. PubMed ID: 14499123
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adapted ultra scale-down approach for predicting the centrifugal separation behavior of high cell density cultures.
    Tustian AD; Salte H; Willoughby NA; Hassan I; Rose MH; Baganz F; Hoare M; Titchener-Hooker NJ
    Biotechnol Prog; 2007; 23(6):1404-10. PubMed ID: 17949106
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular detection of predation by soil micro-arthropods on nematodes.
    Read DS; Sheppard SK; Bruford MW; Glen DM; Symondson WO
    Mol Ecol; 2006 Jun; 15(7):1963-72. PubMed ID: 16689911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of the slug biological control agent, Phasmarhabditis hermaphrodita (Nematoda), on non-target aquatic molluscs.
    Morley NJ; Morritt D
    J Invertebr Pathol; 2006 Jun; 92(2):112-4. PubMed ID: 16716346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. To complete their life cycle, pathogenic nematode-bacteria complexes deter scavengers from feeding on their host cadaver.
    Foltan P; Puza V
    Behav Processes; 2009 Jan; 80(1):76-9. PubMed ID: 18977420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts.
    Emelianoff V; Chapuis E; Le Brun N; Chiral M; Moulia C; Ferdy JB
    Evolution; 2008 Apr; 62(4):932-42. PubMed ID: 18194474
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of soil type on infectivity and persistence of the entomopathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora.
    Koppenhöfer AM; Fuzy EM
    J Invertebr Pathol; 2006 May; 92(1):11-22. PubMed ID: 16563427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of nematodes in a high organic loading rotating biological contactors.
    Salvadó H; Palomo A; Mas M; Puigagut J; Gracia Mdel P
    Water Res; 2004 May; 38(10):2571-8. PubMed ID: 15159160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of salt concentration on floc characteristics and pollutants removal efficiencies in treatment of seafood wastewater by SBR.
    Moon BH; Seo GT; Lee TS; Kim SS; Yoon CH
    Water Sci Technol; 2003; 47(1):65-70. PubMed ID: 12578175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid culture mass production of biocontrol nematodes, Heterorhabditis bacteriophora (Nematoda: Rhabditida): improved timing of dauer juvenile inoculation.
    Johnigk SA; Ecke F; Poehling M; Ehlers RU
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):651-8. PubMed ID: 14727090
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.
    Kochergin V; Miller K
    Appl Biochem Biotechnol; 2011 Jan; 163(1):90-101. PubMed ID: 20607445
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of a new application apparatus for entomopathogenic nematodes.
    Piggott SJ; Clayton R; Matthews GA; Wright DJ
    Pest Manag Sci; 2003 Dec; 59(12):1344-8. PubMed ID: 14667056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of repeated applications of the molluscicide metaldehyde and the biocontrol nematode Phasmarhabditis hermaphrodita on molluscs, earthworms, nematodes, acarids and collembolans: a two-year study in north-west Spain.
    Iglesias J; Castillejo J; Castro R
    Pest Manag Sci; 2003 Nov; 59(11):1217-24. PubMed ID: 14620048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ magnetic separation for extracellular protein production.
    Käppler T; Cerff M; Ottow K; Hobley T; Posten C
    Biotechnol Bioeng; 2009 Feb; 102(2):535-45. PubMed ID: 18726963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The parasitic nematode Phasmarhabditis hermaphrodita defends its slug host from being predated or scavenged by manipulating host spatial behaviour.
    Pechova H; Foltan P
    Behav Processes; 2008 Jul; 78(3):416-20. PubMed ID: 18406076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.