These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 11822900)
1. Internal and external mass transfer in biofilms grown at various flow velocities. Beyenal H; Lewandowski Z Biotechnol Prog; 2002; 18(1):55-61. PubMed ID: 11822900 [TBL] [Abstract][Full Text] [Related]
2. The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. Dunsmore BC; Jacobsen A; Hall-Stoodley L; Bass CJ; Lappin-Scott HM; Stoodley P J Ind Microbiol Biotechnol; 2002 Dec; 29(6):347-53. PubMed ID: 12483477 [TBL] [Abstract][Full Text] [Related]
3. Growth, structure and oxygen penetration in particle supported autotrophic biofilms. Boessmann M; Neu TR; Horn H; Hempel DC Water Sci Technol; 2004; 49(11-12):371-7. PubMed ID: 15303764 [TBL] [Abstract][Full Text] [Related]
4. Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI). Manz B; Volke F; Goll D; Horn H Biotechnol Bioeng; 2003 Nov; 84(4):424-32. PubMed ID: 14574699 [TBL] [Abstract][Full Text] [Related]
5. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Stoodley P; Lewandowski Z; Boyle JD; Lappin-Scott HM Biotechnol Bioeng; 1999 Oct; 65(1):83-92. PubMed ID: 10440674 [TBL] [Abstract][Full Text] [Related]
6. Behaviour of biofilm systems under varying hydrodynamic conditions. León Ohl A; Horn H; Hempel DC Water Sci Technol; 2004; 49(11-12):345-51. PubMed ID: 15303760 [TBL] [Abstract][Full Text] [Related]
7. Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance. Casey E; Glennon B; Hamer G Biotechnol Bioeng; 2000 Feb; 67(4):476-86. PubMed ID: 10620763 [TBL] [Abstract][Full Text] [Related]
8. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow. Teodósio JS; Simões M; Melo LF; Mergulhão FJ Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456 [TBL] [Abstract][Full Text] [Related]
9. Biofilm material properties as related to shear-induced deformation and detachment phenomena. Stoodley P; Cargo R; Rupp CJ; Wilson S; Klapper I J Ind Microbiol Biotechnol; 2002 Dec; 29(6):361-7. PubMed ID: 12483479 [TBL] [Abstract][Full Text] [Related]
10. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements. Guimerà X; Dorado AD; Bonsfills A; Gabriel G; Gabriel D; Gamisans X Water Res; 2016 Oct; 102():551-560. PubMed ID: 27423049 [TBL] [Abstract][Full Text] [Related]
11. Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions. Mangalappalli-Illathu AK; Lawrence JR; Swerhone GD; Korber DR Int J Food Microbiol; 2008 Mar; 123(1-2):109-20. PubMed ID: 18261816 [TBL] [Abstract][Full Text] [Related]
12. Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy. Wagner M; Manz B; Volke F; Neu TR; Horn H Biotechnol Bioeng; 2010 Sep; 107(1):172-81. PubMed ID: 20506514 [TBL] [Abstract][Full Text] [Related]
13. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Picioreanu C; van Loosdrecht MC; Heijnen JJ Biotechnol Bioeng; 2001 Jan; 72(2):205-18. PubMed ID: 11114658 [TBL] [Abstract][Full Text] [Related]
14. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Horn H; Reiff H; Morgenroth E Biotechnol Bioeng; 2003 Mar; 81(5):607-17. PubMed ID: 12514810 [TBL] [Abstract][Full Text] [Related]
15. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems. Vrouwenvelder JS; Buiter J; Riviere M; van der Meer WG; van Loosdrecht MC; Kruithof JC Water Res; 2010 Feb; 44(3):689-702. PubMed ID: 19836048 [TBL] [Abstract][Full Text] [Related]
16. The influence of fluid shear and AICI3 on the material properties of Pseudomonas aeruginosa PAO1 and Desulfovibrio sp. EX265 biofilms. Stoodley P; Jacobsen A; Dunsmore BC; Purevdorj B; Wilson S; Lappin-Scott HM; Costerton JW Water Sci Technol; 2001; 43(6):113-20. PubMed ID: 11381956 [TBL] [Abstract][Full Text] [Related]
17. Evaluating trends in biofilm density using the UMCCA model. Laspidou CS; Rittmann BE Water Res; 2004; 38(14-15):3362-72. PubMed ID: 15276753 [TBL] [Abstract][Full Text] [Related]
18. 3D finite element model of biofilm detachment using real biofilm structures from CLSM data. Böl M; Möhle RB; Haesner M; Neu TR; Horn H; Krull R Biotechnol Bioeng; 2009 May; 103(1):177-86. PubMed ID: 19191328 [TBL] [Abstract][Full Text] [Related]
19. Stratification in the cohesion of biofilms grown under various environmental conditions. Derlon N; Massé A; Escudié R; Bernet N; Paul E Water Res; 2008 Apr; 42(8-9):2102-10. PubMed ID: 18086485 [TBL] [Abstract][Full Text] [Related]
20. Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors. Belfiore LA; Bonani W; Leoni M; Belfiore CJ Biophys Chem; 2009 May; 141(2-3):140-52. PubMed ID: 19261374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]