BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11822900)

  • 1. Internal and external mass transfer in biofilms grown at various flow velocities.
    Beyenal H; Lewandowski Z
    Biotechnol Prog; 2002; 18(1):55-61. PubMed ID: 11822900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms.
    Dunsmore BC; Jacobsen A; Hall-Stoodley L; Bass CJ; Lappin-Scott HM; Stoodley P
    J Ind Microbiol Biotechnol; 2002 Dec; 29(6):347-53. PubMed ID: 12483477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth, structure and oxygen penetration in particle supported autotrophic biofilms.
    Boessmann M; Neu TR; Horn H; Hempel DC
    Water Sci Technol; 2004; 49(11-12):371-7. PubMed ID: 15303764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI).
    Manz B; Volke F; Goll D; Horn H
    Biotechnol Bioeng; 2003 Nov; 84(4):424-32. PubMed ID: 14574699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology.
    Stoodley P; Lewandowski Z; Boyle JD; Lappin-Scott HM
    Biotechnol Bioeng; 1999 Oct; 65(1):83-92. PubMed ID: 10440674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behaviour of biofilm systems under varying hydrodynamic conditions.
    León Ohl A; Horn H; Hempel DC
    Water Sci Technol; 2004; 49(11-12):345-51. PubMed ID: 15303760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance.
    Casey E; Glennon B; Hamer G
    Biotechnol Bioeng; 2000 Feb; 67(4):476-86. PubMed ID: 10620763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm material properties as related to shear-induced deformation and detachment phenomena.
    Stoodley P; Cargo R; Rupp CJ; Wilson S; Klapper I
    J Ind Microbiol Biotechnol; 2002 Dec; 29(6):361-7. PubMed ID: 12483479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.
    Guimerà X; Dorado AD; Bonsfills A; Gabriel G; Gabriel D; Gamisans X
    Water Res; 2016 Oct; 102():551-560. PubMed ID: 27423049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions.
    Mangalappalli-Illathu AK; Lawrence JR; Swerhone GD; Korber DR
    Int J Food Microbiol; 2008 Mar; 123(1-2):109-20. PubMed ID: 18261816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online assessment of biofilm development, sloughing and forced detachment in tube reactor by means of magnetic resonance microscopy.
    Wagner M; Manz B; Volke F; Neu TR; Horn H
    Biotechnol Bioeng; 2010 Sep; 107(1):172-81. PubMed ID: 20506514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 2001 Jan; 72(2):205-18. PubMed ID: 11114658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions.
    Horn H; Reiff H; Morgenroth E
    Biotechnol Bioeng; 2003 Mar; 81(5):607-17. PubMed ID: 12514810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems.
    Vrouwenvelder JS; Buiter J; Riviere M; van der Meer WG; van Loosdrecht MC; Kruithof JC
    Water Res; 2010 Feb; 44(3):689-702. PubMed ID: 19836048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of fluid shear and AICI3 on the material properties of Pseudomonas aeruginosa PAO1 and Desulfovibrio sp. EX265 biofilms.
    Stoodley P; Jacobsen A; Dunsmore BC; Purevdorj B; Wilson S; Lappin-Scott HM; Costerton JW
    Water Sci Technol; 2001; 43(6):113-20. PubMed ID: 11381956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating trends in biofilm density using the UMCCA model.
    Laspidou CS; Rittmann BE
    Water Res; 2004; 38(14-15):3362-72. PubMed ID: 15276753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D finite element model of biofilm detachment using real biofilm structures from CLSM data.
    Böl M; Möhle RB; Haesner M; Neu TR; Horn H; Krull R
    Biotechnol Bioeng; 2009 May; 103(1):177-86. PubMed ID: 19191328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stratification in the cohesion of biofilms grown under various environmental conditions.
    Derlon N; Massé A; Escudié R; Bernet N; Paul E
    Water Res; 2008 Apr; 42(8-9):2102-10. PubMed ID: 18086485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors.
    Belfiore LA; Bonani W; Leoni M; Belfiore CJ
    Biophys Chem; 2009 May; 141(2-3):140-52. PubMed ID: 19261374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.