BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 11823071)

  • 1. Mu- and delta-opioid receptor mRNAs are expressed in periaqueductal gray neurons projecting to the rostral ventromedial medulla.
    Wang H; Wessendorf MW
    Neuroscience; 2002; 109(3):619-34. PubMed ID: 11823071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mu- and delta-opioid receptor mRNAs are expressed in spinally projecting serotonergic and nonserotonergic neurons of the rostral ventromedial medulla.
    Wang H; Wessendorf MW
    J Comp Neurol; 1999 Feb; 404(2):183-96. PubMed ID: 9934993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mu-Opioid and delta-opioid receptors are expressed in brainstem antinociceptive circuits: studies using immunocytochemistry and retrograde tract-tracing.
    Kalyuzhny AE; Arvidsson U; Wu W; Wessendorf MW
    J Neurosci; 1996 Oct; 16(20):6490-503. PubMed ID: 8815927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship of mu- and delta-opioid receptors to GABAergic neurons in the central nervous system, including antinociceptive brainstem circuits.
    Kalyuzhny AE; Wessendorf MW
    J Comp Neurol; 1998 Mar; 392(4):528-47. PubMed ID: 9514515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equal proportions of small and large DRG neurons express opioid receptor mRNAs.
    Wang H; Wessendorf MW
    J Comp Neurol; 2001 Jan; 429(4):590-600. PubMed ID: 11135237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurochemical properties of BDNF-containing neurons projecting to rostral ventromedial medulla in the ventrolateral periaqueductal gray.
    Yin JB; Wu HH; Dong YL; Zhang T; Wang J; Zhang Y; Wei YY; Lu YC; Wu SX; Wang W; Li YQ
    Front Neural Circuits; 2014; 8():137. PubMed ID: 25477786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic and postsynaptic relations of mu-opioid receptors to gamma-aminobutyric acid-immunoreactive and medullary-projecting periaqueductal gray neurons.
    Commons KG; Aicher SA; Kow LM; Pfaff DW
    J Comp Neurol; 2000 Apr; 419(4):532-42. PubMed ID: 10742719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mu and kappa opioid receptors in periaqueductal gray and rostral ventromedial medulla.
    Gutstein HB; Mansour A; Watson SJ; Akil H; Fields HL
    Neuroreport; 1998 Jun; 9(8):1777-81. PubMed ID: 9665599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat.
    Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT
    J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periaqueductal gray neurons project to spinally projecting GABAergic neurons in the rostral ventromedial medulla.
    Morgan MM; Whittier KL; Hegarty DM; Aicher SA
    Pain; 2008 Nov; 140(2):376-386. PubMed ID: 18926635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphine preferentially activates the periaqueductal gray-rostral ventromedial medullary pathway in the male rat: a potential mechanism for sex differences in antinociception.
    Loyd DR; Morgan MM; Murphy AZ
    Neuroscience; 2007 Jun; 147(2):456-68. PubMed ID: 17540508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly delta selective antagonists in the RVM attenuate the antinociceptive effect of PAG DAMGO.
    Hirakawa N; Tershner SA; Fields HL
    Neuroreport; 1999 Oct; 10(15):3125-9. PubMed ID: 10574547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional interaction between TRPV1 and mu-opioid receptors in the descending antinociceptive pathway activates glutamate transmission and induces analgesia.
    Maione S; Starowicz K; Cristino L; Guida F; Palazzo E; Luongo L; Rossi F; Marabese I; de Novellis V; Di Marzo V
    J Neurophysiol; 2009 May; 101(5):2411-22. PubMed ID: 19297510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotensin excites periaqueductal gray neurons projecting to the rostral ventromedial medulla.
    Li AH; Hwang HM; Tan PP; Wu T; Wang HL
    J Neurophysiol; 2001 Apr; 85(4):1479-88. PubMed ID: 11287471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antinociception produced by mu opioid receptor activation in the amygdala is partly dependent on activation of mu opioid and neurotensin receptors in the ventral periaqueductal gray.
    Tershner SA; Helmstetter FJ
    Brain Res; 2000 May; 865(1):17-26. PubMed ID: 10814729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nocistatin excites rostral agranular insular cortex-periaqueductal gray projection neurons by enhancing transient receptor potential cation conductance via G(alphaq/11)-PLC-protein kinase C pathway.
    Chen YL; Li AH; Yeh TH; Chou AH; Weng YS; Wang HL
    Neuroscience; 2010 Jun; 168(1):226-39. PubMed ID: 20359524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Androgen and estrogen (alpha) receptor localization on periaqueductal gray neurons projecting to the rostral ventromedial medulla in the male and female rat.
    Loyd DR; Murphy AZ
    J Chem Neuroanat; 2008 Dec; 36(3-4):216-26. PubMed ID: 18771723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of morphine and kainic acid microinjections into identical PAG sites on the activity of RVM neurons.
    Tortorici V; Morgan MM
    J Neurophysiol; 2002 Oct; 88(4):1707-15. PubMed ID: 12364500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sex differences in the anatomical and functional organization of the periaqueductal gray-rostral ventromedial medullary pathway in the rat: a potential circuit mediating the sexually dimorphic actions of morphine.
    Loyd DR; Murphy AZ
    J Comp Neurol; 2006 Jun; 496(5):723-38. PubMed ID: 16615128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The projections of the midbrain periaqueductal grey to the pons and medulla oblongata in rats.
    Odeh F; Antal M
    Eur J Neurosci; 2001 Oct; 14(8):1275-86. PubMed ID: 11703456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.